BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33374516)

  • 1. Gene Editing Targeting the DUX4 Polyadenylation Signal: A Therapy for FSHD?
    Joubert R; Mariot V; Charpentier M; Concordet JP; Dumonceaux J
    J Pers Med; 2020 Dec; 11(1):. PubMed ID: 33374516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenine base editing of the
    Šikrová D; Cadar VA; Ariyurek Y; Laros JFJ; Balog J; van der Maarel SM
    Mol Ther Nucleic Acids; 2021 Sep; 25():342-354. PubMed ID: 34484861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene Editing to Tackle Facioscapulohumeral Muscular Dystrophy.
    Mariot V; Dumonceaux J
    Front Genome Ed; 2022; 4():937879. PubMed ID: 35910413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antisense Oligonucleotides Used to Target the DUX4 mRNA as Therapeutic Approaches in FaciosScapuloHumeral Muscular Dystrophy (FSHD).
    Ansseau E; Vanderplanck C; Wauters A; Harper SQ; Coppée F; Belayew A
    Genes (Basel); 2017 Mar; 8(3):. PubMed ID: 28273791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR mediated targeting of DUX4 distal regulatory element represses DUX4 target genes dysregulated in Facioscapulohumeral muscular dystrophy.
    Das S; Chadwick BP
    Sci Rep; 2021 Jun; 11(1):12598. PubMed ID: 34131248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intronic
    Goossens R; van den Boogaard ML; Lemmers RJLF; Balog J; van der Vliet PJ; Willemsen IM; Schouten J; Maggio I; van der Stoep N; Hoeben RC; Tapscott SJ; Geijsen N; Gonçalves MAFV; Sacconi S; Tawil R; van der Maarel SM
    J Med Genet; 2019 Dec; 56(12):828-837. PubMed ID: 31676591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A complex interplay of genetic and epigenetic events leads to abnormal expression of the DUX4 gene in facioscapulohumeral muscular dystrophy.
    Gatica LV; Rosa AL
    Neuromuscul Disord; 2016 Dec; 26(12):844-852. PubMed ID: 27816329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antagonism Between DUX4 and DUX4c Highlights a Pathomechanism Operating Through β-Catenin in Facioscapulohumeral Muscular Dystrophy.
    Ganassi M; Figeac N; Reynaud M; Ortuste Quiroga HP; Zammit PS
    Front Cell Dev Biol; 2022; 10():802573. PubMed ID: 36158201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberrant splicing in transgenes containing introns, exons, and V5 epitopes: lessons from developing an FSHD mouse model expressing a D4Z4 repeat with flanking genomic sequences.
    Ansseau E; Domire JS; Wallace LM; Eidahl JO; Guckes SM; Giesige CR; Pyne NK; Belayew A; Harper SQ
    PLoS One; 2015; 10(3):e0118813. PubMed ID: 25742305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A distal auxiliary element facilitates cleavage and polyadenylation of Dux4 mRNA in the pathogenic haplotype of FSHD.
    Peart N; Wagner EJ
    Hum Genet; 2017 Sep; 136(9):1291-1301. PubMed ID: 28540412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sporadic DUX4 expression in FSHD myocytes is associated with incomplete repression by the PRC2 complex and gain of H3K9 acetylation on the contracted D4Z4 allele.
    Haynes P; Bomsztyk K; Miller DG
    Epigenetics Chromatin; 2018 Aug; 11(1):47. PubMed ID: 30122154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic Strategies Targeting DUX4 in FSHD.
    Le Gall L; Sidlauskaite E; Mariot V; Dumonceaux J
    J Clin Med; 2020 Sep; 9(9):. PubMed ID: 32906621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying genome-wide CRISPR-Cas9 screens for therapeutic discovery in facioscapulohumeral muscular dystrophy.
    Lek A; Zhang Y; Woodman KG; Huang S; DeSimone AM; Cohen J; Ho V; Conner J; Mead L; Kodani A; Pakula A; Sanjana N; King OD; Jones PL; Wagner KR; Lek M; Kunkel LM
    Sci Transl Med; 2020 Mar; 12(536):. PubMed ID: 32213627
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Sidlauskaite E; Le Gall L; Mariot V; Dumonceaux J
    J Pers Med; 2020 Jul; 10(3):. PubMed ID: 32731450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein kinase A activation inhibits
    Cruz JM; Hupper N; Wilson LS; Concannon JB; Wang Y; Oberhauser B; Patora-Komisarska K; Zhang Y; Glass DJ; Trendelenburg AU; Clarke BA
    J Biol Chem; 2018 Jul; 293(30):11837-11849. PubMed ID: 29899111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinically Advanced p38 Inhibitors Suppress DUX4 Expression in Cellular and Animal Models of Facioscapulohumeral Muscular Dystrophy.
    Oliva J; Galasinski S; Richey A; Campbell AE; Meyers MJ; Modi N; Zhong JW; Tawil R; Tapscott SJ; Sverdrup FM
    J Pharmacol Exp Ther; 2019 Aug; 370(2):219-230. PubMed ID: 31189728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression patterns of FSHD-causing DUX4 and myogenic transcription factors PAX3 and PAX7 are spatially distinct in differentiating human stem cell cultures.
    Haynes P; Kernan K; Zhou SL; Miller DG
    Skelet Muscle; 2017 Jun; 7(1):13. PubMed ID: 28637492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PAX7 target gene repression is a superior FSHD biomarker than DUX4 target gene activation, associating with pathological severity and identifying FSHD at the single-cell level.
    Banerji CRS; Zammit PS
    Hum Mol Genet; 2019 Jul; 28(13):2224-2236. PubMed ID: 31067297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Epigenetic Regulators of DUX4-fl for Targeted Therapy of Facioscapulohumeral Muscular Dystrophy.
    Himeda CL; Jones TI; Virbasius CM; Zhu LJ; Green MR; Jones PL
    Mol Ther; 2018 Jul; 26(7):1797-1807. PubMed ID: 29759937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β-Catenin is central to DUX4-driven network rewiring in facioscapulohumeral muscular dystrophy.
    Banerji CR; Knopp P; Moyle LA; Severini S; Orrell RW; Teschendorff AE; Zammit PS
    J R Soc Interface; 2015 Jan; 12(102):20140797. PubMed ID: 25551153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.