These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 33374579)

  • 1. Vinification without
    Csoma H; Kállai Z; Antunovics Z; Czentye K; Sipiczki M
    Microorganisms; 2020 Dec; 9(1):. PubMed ID: 33374579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Starmerella lactis-condensi, a yeast that has adapted to the conditions in the oenological environment.
    Csoma H; Kállai Z; Czentye K; Sipiczki M
    Int J Food Microbiol; 2023 Sep; 401():110282. PubMed ID: 37329632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of
    Csoma H; Acs-Szabo L; Papp LA; Kállai Z; Miklós I; Sipiczki M
    Microorganisms; 2023 Mar; 11(4):. PubMed ID: 37110275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of High Sugar Content on Fermentation Dynamics and Some Metabolites of Wine-Related Yeast Species
    Horváth BO; Sárdy DN; Kellner N; Magyar I
    Food Technol Biotechnol; 2020 Mar; 58(1):76-83. PubMed ID: 32684791
    [No Abstract]   [Full Text] [Related]  

  • 5. Candida zemplinina sp. nov., an osmotolerant and psychrotolerant yeast that ferments sweet botrytized wines.
    Sipiczki M
    Int J Syst Evol Microbiol; 2003 Nov; 53(Pt 6):2079-83. PubMed ID: 14657149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular identification and osmotolerant profile of wine yeasts that ferment a high sugar grape must.
    Tofalo R; Chaves-López C; Di Fabio F; Schirone M; Felis GE; Torriani S; Paparella A; Suzzi G
    Int J Food Microbiol; 2009 Apr; 130(3):179-87. PubMed ID: 19230999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocontrol Ability and Action Mechanism of Starmerella bacillaris (Synonym Candida zemplinina) Isolated from Wine Musts against Gray Mold Disease Agent Botrytis cinerea on Grape and Their Effects on Alcoholic Fermentation.
    Lemos WJ; Bovo B; Nadai C; Crosato G; Carlot M; Favaron F; Giacomini A; Corich V
    Front Microbiol; 2016; 7():1249. PubMed ID: 27574517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Osmotolerant Yeasts and Yeast-Like Molds from Apple Orchards and Apple Juice Processing Plants in China and Investigation of Their Spoilage Potential.
    Wang H; Hu Z; Long F; Niu C; Yuan Y; Yue T
    J Food Sci; 2015 Aug; 80(8):M1850-60. PubMed ID: 26130165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overwintering of Vineyard Yeasts: Survival of Interacting Yeast Communities in Grapes Mummified on Vines.
    Sipiczki M
    Front Microbiol; 2016; 7():212. PubMed ID: 26973603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological diversity of Saccharomyces yeasts of spontaneously fermenting wines in four wine regions: comparative genotypic and phenotypic analysis.
    Csoma H; Zakany N; Capece A; Romano P; Sipiczki M
    Int J Food Microbiol; 2010 Jun; 140(2-3):239-48. PubMed ID: 20413169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: physiological and molecular characterizations.
    Englezos V; Rantsiou K; Torchio F; Rolle L; Gerbi V; Cocolin L
    Int J Food Microbiol; 2015 Apr; 199():33-40. PubMed ID: 25625909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incidence of osmophilic yeasts and Zygosaccharomyces rouxii during the production of concentrate grape juices.
    Rojo MC; Torres Palazzolo C; Cuello R; González M; Guevara F; Ponsone ML; Mercado LA; Martínez C; Combina M
    Food Microbiol; 2017 Jun; 64():7-14. PubMed ID: 28213037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The microbial ecology of wine grape berries.
    Barata A; Malfeito-Ferreira M; Loureiro V
    Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmotolerant yeasts isolated from Tokaj wines.
    Miklós I; Sipiczki M; Benko Z
    J Basic Microbiol; 1994; 34(6):379-85. PubMed ID: 7815306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and oenological characterization of Touriga Nacional non-Saccharomyces yeasts.
    Teixeira A; Caldeira I; Duarte FL
    J Appl Microbiol; 2015 Mar; 118(3):658-71. PubMed ID: 25495635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between Brettanomyces bruxellensis and other yeast species during the initial stages of winemaking.
    Renouf V; Falcou M; Miot-Sertier C; Perello MC; De Revel G; Lonvaud-Funel A
    J Appl Microbiol; 2006 Jun; 100(6):1208-19. PubMed ID: 16696668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of yeasts derived from natural fermentation in a Tokaj winery.
    Sipiczk M; Romano P; Lipani G; Miklos I; Antunovics Z
    Antonie Van Leeuwenhoek; 2001 Jan; 79(1):97-105. PubMed ID: 11392490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating of yeast species in wine fermentation using terminal restriction fragment length polymorphism method.
    Sun Y; Liu Y
    Food Microbiol; 2014 Apr; 38():201-7. PubMed ID: 24290644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing and creating Saccharomyces interspecific hybrids for improved, industry relevant, phenotypes.
    Bellon JR; Yang F; Day MP; Inglis DL; Chambers PJ
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8597-609. PubMed ID: 26099331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistence of Two Non-Saccharomyces Yeasts (Hanseniaspora and Starmerella) in the Cellar.
    Grangeteau C; Gerhards D; von Wallbrunn C; Alexandre H; Rousseaux S; Guilloux-Benatier M
    Front Microbiol; 2016; 7():268. PubMed ID: 27014199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.