These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 33374582)

  • 1. Caloric Intake in Renal Patients: Repercussions on Mineral Metabolism.
    Vidal A; Ríos R; Pineda C; López I; Raya AI; Aguilera-Tejero E; Rodríguez M
    Nutrients; 2020 Dec; 13(1):. PubMed ID: 33374582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1,25-Dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism.
    Barthel TK; Mathern DR; Whitfield GK; Haussler CA; Hopper HA; Hsieh JC; Slater SA; Hsieh G; Kaczmarska M; Jurutka PW; Kolek OI; Ghishan FK; Haussler MR
    J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):381-8. PubMed ID: 17293108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle plasticity is influenced by renal function and caloric intake through the FGF23-vitamin D axis.
    Acevedo LM; Vidal Á; Aguilera-Tejero E; Rivero JL
    Am J Physiol Cell Physiol; 2023 Jan; 324(1):C14-C28. PubMed ID: 36409180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Changes in mineral metabolism in stage 3, 4, and 5 chronic kidney disease (not on dialysis)].
    Lorenzo Sellares V; Torregrosa V
    Nefrologia; 2008; 28 Suppl 3():67-78. PubMed ID: 19018742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated FGF23 and disordered renal mineral handling with reduced bone mineralization in chronically erythropoietin over-expressing transgenic mice.
    Daryadel A; Natale L; Seebeck P; Bettoni C; Schnitzbauer U; Gassmann M; Wagner CA
    Sci Rep; 2019 Oct; 9(1):14989. PubMed ID: 31628396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibroblast growth factor 23 and disordered vitamin D metabolism in chronic kidney disease: updating the "trade-off" hypothesis.
    Gutiérrez OM
    Clin J Am Soc Nephrol; 2010 Sep; 5(9):1710-6. PubMed ID: 20507957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGF23 in chronic kidney disease.
    Wahl P; Wolf M
    Adv Exp Med Biol; 2012; 728():107-25. PubMed ID: 22396166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of fibroblast growth factor 23 in phosphate homeostasis and pathogenesis of disordered mineral metabolism in chronic kidney disease.
    Stubbs J; Liu S; Quarles LD
    Semin Dial; 2007; 20(4):302-8. PubMed ID: 17635819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reciprocal control of 1,25-dihydroxyvitamin D and FGF23 formation involving the FGF23/Klotho system.
    Prié D; Friedlander G
    Clin J Am Soc Nephrol; 2010 Sep; 5(9):1717-22. PubMed ID: 20798257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGF23: a key player in mineral and bone disorder in CKD.
    Komaba H; Fukagawa M
    Nefrologia; 2009; 29(5):392-6. PubMed ID: 19820750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of caloric restriction on phosphate metabolism and uremic vascular calcification.
    Vidal A; Rios R; Pineda C; Lopez I; Rodriguez M; Aguilera-Tejero E; Raya AI
    Am J Physiol Renal Physiol; 2020 May; 318(5):F1188-F1198. PubMed ID: 32249611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [CKD-MBD (Chronic Kidney Disease-Mineral and Bone Disorder). Role of FGF23-Klotho axis in CKD-MBD].
    Komaba H
    Clin Calcium; 2010 Jul; 20(7):1028-36. PubMed ID: 20585181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct regulation of fibroblast growth factor 23 by energy intake through mTOR.
    Vidal A; Rios R; Pineda C; Lopez I; Muñoz-Castañeda JR; Rodriguez M; Aguilera-Tejero E; Raya AI
    Sci Rep; 2020 Feb; 10(1):1795. PubMed ID: 32020002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease.
    Hasegawa H; Nagano N; Urakawa I; Yamazaki Y; Iijima K; Fujita T; Yamashita T; Fukumoto S; Shimada T
    Kidney Int; 2010 Nov; 78(10):975-80. PubMed ID: 20844473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-Dense Diets and Mineral Metabolism in the Context of Chronic Kidney Disease⁻Metabolic Bone Disease (CKD-MBD).
    Rodriguez M; Aguilera-Tejero E
    Nutrients; 2018 Dec; 10(12):. PubMed ID: 30513703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of fibroblast growth factor 23 (FGF23) in health and disease.
    Bär L; Stournaras C; Lang F; Föller M
    FEBS Lett; 2019 Aug; 593(15):1879-1900. PubMed ID: 31199502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Klotho Lacks an FGF23-Independent Role in Mineral Homeostasis.
    Andrukhova O; Bayer J; Schüler C; Zeitz U; Murali SK; Ada S; Alvarez-Pez JM; Smorodchenko A; Erben RG
    J Bone Miner Res; 2017 Oct; 32(10):2049-2061. PubMed ID: 28600880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men.
    Daryadel A; Bettoni C; Haider T; Imenez Silva PH; Schnitzbauer U; Pastor-Arroyo EM; Wenger RH; Gassmann M; Wagner CA
    Pflugers Arch; 2018 Oct; 470(10):1569-1582. PubMed ID: 29961920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-serum phosphate and parathyroid hormone distinctly regulate bone loss and vascular calcification in experimental chronic kidney disease.
    Carrillo-López N; Panizo S; Alonso-Montes C; Martínez-Arias L; Avello N; Sosa P; Dusso AS; Cannata-Andía JB; Naves-Díaz M
    Nephrol Dial Transplant; 2019 Jun; 34(6):934-941. PubMed ID: 30189026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Chronic kidney disease (CKD) and bone. Regulation of calcium and phosphate metabolism by FGF23/Klotho].
    Fukumoto S
    Clin Calcium; 2009 Apr; 19(4):523-8. PubMed ID: 19329831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.