These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 33374758)
1. NAC Transcription Factors as Positive or Negative Regulators during Ongoing Battle between Pathogens and Our Food Crops. Bian Z; Gao H; Wang C Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374758 [TBL] [Abstract][Full Text] [Related]
2. The interplay between ABA/ethylene and NAC TFs in tomato fruit ripening: a review. Kou X; Zhou J; Wu CE; Yang S; Liu Y; Chai L; Xue Z Plant Mol Biol; 2021 Jun; 106(3):223-238. PubMed ID: 33634368 [TBL] [Abstract][Full Text] [Related]
3. Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. Du M; Zhai Q; Deng L; Li S; Li H; Yan L; Huang Z; Wang B; Jiang H; Huang T; Li CB; Wei J; Kang L; Li J; Li C Plant Cell; 2014 Jul; 26(7):3167-84. PubMed ID: 25005917 [TBL] [Abstract][Full Text] [Related]
4. GhATAF1, a NAC transcription factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks. He X; Zhu L; Xu L; Guo W; Zhang X Plant Cell Rep; 2016 Oct; 35(10):2167-79. PubMed ID: 27432176 [TBL] [Abstract][Full Text] [Related]
5. Plant NAC transcription factors in the battle against pathogens. Dong B; Liu Y; Huang G; Song A; Chen S; Jiang J; Chen F; Fang W BMC Plant Biol; 2024 Oct; 24(1):958. PubMed ID: 39396978 [TBL] [Abstract][Full Text] [Related]
6. A tomato NAC transcription factor, SlNAM1, positively regulates ethylene biosynthesis and the onset of tomato fruit ripening. Gao Y; Fan ZQ; Zhang Q; Li HL; Liu GS; Jing Y; Zhang YP; Zhu BZ; Zhu HL; Chen JY; Grierson D; Luo YB; Zhao XD; Fu DQ Plant J; 2021 Dec; 108(5):1317-1331. PubMed ID: 34580960 [TBL] [Abstract][Full Text] [Related]
7. Characteristics of NAC transcription factors in Solanaceae crops and their roles in responding to abiotic and biotic stresses. Ou X; Sun L; Chen Y; Zhao Z; Jian W Biochem Biophys Res Commun; 2024 May; 709():149840. PubMed ID: 38564941 [TBL] [Abstract][Full Text] [Related]
9. The transcription factor VaNAC17 from grapevine (Vitis amurensis) enhances drought tolerance by modulating jasmonic acid biosynthesis in transgenic Arabidopsis. Su L; Fang L; Zhu Z; Zhang L; Sun X; Wang Y; Wang Q; Li S; Xin H Plant Cell Rep; 2020 May; 39(5):621-634. PubMed ID: 32107612 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional Control of Seed Life: New Insights into the Role of the NAC Family. Fuertes-Aguilar J; Matilla AJ Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791407 [TBL] [Abstract][Full Text] [Related]
11. Regulating the Regulators: The Control of Transcription Factors in Plant Defense Signaling. Ng DW; Abeysinghe JK; Kamali M Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30477211 [TBL] [Abstract][Full Text] [Related]
12. CRISPR/Cas9-Mediated Immunity in Plants Against Pathogens. Sameeullah M; Khan FA; Özer G; Aslam N; Gurel E; Waheed MT; Karadeniz T Curr Issues Mol Biol; 2018; 26():55-64. PubMed ID: 28879856 [TBL] [Abstract][Full Text] [Related]
13. Transcription Factors Interact with ABA through Gene Expression and Signaling Pathways to Mitigate Drought and Salinity Stress. Hussain Q; Asim M; Zhang R; Khan R; Farooq S; Wu J Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439825 [TBL] [Abstract][Full Text] [Related]
14. NAC proteins: regulation and role in stress tolerance. Puranik S; Sahu PP; Srivastava PS; Prasad M Trends Plant Sci; 2012 Jun; 17(6):369-81. PubMed ID: 22445067 [TBL] [Abstract][Full Text] [Related]
15. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response. Liu B; Ouyang Z; Zhang Y; Li X; Hong Y; Huang L; Liu S; Zhang H; Li D; Song F PLoS One; 2014; 9(7):e102067. PubMed ID: 25010573 [TBL] [Abstract][Full Text] [Related]
16. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Zhu M; Chen G; Zhou S; Tu Y; Wang Y; Dong T; Hu Z Plant Cell Physiol; 2014 Jan; 55(1):119-35. PubMed ID: 24265273 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita. Du C; Jiang J; Zhang H; Zhao T; Yang H; Zhang D; Zhao Z; Xu X; Li J BMC Genomics; 2020 Mar; 21(1):250. PubMed ID: 32293256 [TBL] [Abstract][Full Text] [Related]
18. NAC transcription factor ONAC066 positively regulates disease resistance by suppressing the ABA signaling pathway in rice. Liu Q; Yan S; Huang W; Yang J; Dong J; Zhang S; Zhao J; Yang T; Mao X; Zhu X; Liu B Plant Mol Biol; 2018 Nov; 98(4-5):289-302. PubMed ID: 30387038 [TBL] [Abstract][Full Text] [Related]
19. Zhu Z; Li G; Yan C; Liu L; Zhang Q; Han Z; Li B Int J Mol Sci; 2019 May; 20(11):. PubMed ID: 31151316 [TBL] [Abstract][Full Text] [Related]
20. OsWRKY5 Promotes Rice Leaf Senescence via Senescence-Associated NAC and Abscisic Acid Biosynthesis Pathway. Kim T; Kang K; Kim SH; An G; Paek NC Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31505875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]