These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 33374809)

  • 1. On-Device Deep Personalization for Robust Activity Data Collection.
    Mairittha N; Mairittha T; Inoue S
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-Device Deep Learning Inference for Efficient Activity Data Collection.
    Mairittha N; Mairittha T; Inoue S
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31387314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. User Models for Personalized Physical Activity Interventions: Scoping Review.
    Ghanvatkar S; Kankanhalli A; Rajan V
    JMIR Mhealth Uhealth; 2019 Jan; 7(1):e11098. PubMed ID: 30664474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Personalizing Activity Recognition Models Through Quantifying Different Types of Uncertainty Using Wearable Sensors.
    Akbari A; Jafari R
    IEEE Trans Biomed Eng; 2020 Sep; 67(9):2530-2541. PubMed ID: 31905130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobile sensor based human activity recognition: distinguishing of challenging activities by applying long short-term memory deep learning modified by residual network concept.
    Shojaedini SV; Beirami MJ
    Biomed Eng Lett; 2020 Aug; 10(3):419-430. PubMed ID: 32864175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating a spoken dialogue system, nursing records, and activity data collection based on smartphones.
    Mairittha T; Mairittha N; Inoue S
    Comput Methods Programs Biomed; 2021 Oct; 210():106364. PubMed ID: 34500143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incremental Learning to Personalize Human Activity Recognition Models: The Importance of Human AI Collaboration.
    Siirtola P; Röning J
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31775243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smartphone-Based System for Learning and Inferring Hearing Aid Settings.
    Aldaz G; Puria S; Leifer LJ
    J Am Acad Audiol; 2016 Oct; 27(9):732-749. PubMed ID: 27718350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobile Deep Learning System That Calculates UVI Using Illuminance Value of User's Location.
    Oh ST; Ga DH; Lim JH
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33572393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Fast and Robust Deep Convolutional Neural Networks for Complex Human Activity Recognition Using Smartphone.
    Qi W; Su H; Yang C; Ferrigno G; De Momi E; Aliverti A
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31470521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Personalized Watch-Based Fall Detection Using a Collaborative Edge-Cloud Framework.
    Ngu AH; Metsis V; Coyne S; Srinivas P; Salad T; Mahmud U; Chee KH
    Int J Neural Syst; 2022 Dec; 32(12):2250048. PubMed ID: 35972790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Hybrid Deep Learning System for Real-World Mobile User Authentication Using Motion Sensors.
    Zhu T; Weng Z; Chen G; Fu L
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Authentication of Smartphone Users Based on Activity Recognition and Mobile Sensing.
    Ehatisham-Ul-Haq M; Azam MA; Loo J; Shuang K; Islam S; Naeem U; Amin Y
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28878177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corun: Concurrent Inference and Continuous Training at the Edge for Cost-Efficient AI-Based Mobile Image Sensing.
    Liu Y; Andhare A; Kang KD
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instant Stress: Detection of Perceived Mental Stress Through Smartphone Photoplethysmography and Thermal Imaging.
    Cho Y; Julier SJ; Bianchi-Berthouze N
    JMIR Ment Health; 2019 Apr; 6(4):e10140. PubMed ID: 30964440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating On-Device Learning with Layer-Wise Processor Selection Method on Unified Memory.
    Ha D; Kim M; Moon K; Jeong CY
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lifelong Personalization
    Spaulding S; Shen J; Park HW; Breazeal C
    Front Robot AI; 2021; 8():683066. PubMed ID: 34164437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearable sensors with possibilities for data exchange: Analyzing status and needs of different actors in mobile health monitoring systems.
    Muzny M; Henriksen A; Giordanengo A; Muzik J; Grøttland A; Blixgård H; Hartvigsen G; Årsand E
    Int J Med Inform; 2020 Jan; 133():104017. PubMed ID: 31778885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-enabled mobile application for efficient and robust herb image recognition.
    Sun X; Qian H; Xiong Y; Zhu Y; Huang Z; Yang F
    Sci Rep; 2022 Apr; 12(1):6579. PubMed ID: 35449192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic Sensor Data Generation for Health Applications: A Supervised Deep Learning Approach.
    Norgaard S; Saeedi R; Sasani K; Gebremedhin AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1164-1167. PubMed ID: 30440598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.