These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 33374809)

  • 21. Smartphone-Based Patients' Activity Recognition by Using a Self-Learning Scheme for Medical Monitoring.
    Guo J; Zhou X; Sun Y; Ping G; Zhao G; Li Z
    J Med Syst; 2016 Jun; 40(6):140. PubMed ID: 27106584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measuring and Improving User Experience Through Artificial Intelligence-Aided Design.
    Yang B; Wei L; Pu Z
    Front Psychol; 2020; 11():595374. PubMed ID: 33329260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Guidetomeasure-OT: A mobile 3D application to improve the accuracy, consistency, and efficiency of clinician-led home-based falls-risk assessments.
    Hamm J; Money A; Atwal A
    Int J Med Inform; 2019 Sep; 129():349-365. PubMed ID: 31445277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. REAL-Time Smartphone Activity Classification Using Inertial Sensors-Recognition of Scrolling, Typing, and Watching Videos While Sitting or Walking.
    Zhuo S; Sherlock L; Dobbie G; Koh YS; Russello G; Lottridge D
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. User acceptance of location-tracking technologies in health research: Implications for study design and data quality.
    Hardy J; Veinot TC; Yan X; Berrocal VJ; Clarke P; Goodspeed R; Gomez-Lopez IN; Romero D; Vydiswaran VGV
    J Biomed Inform; 2018 Mar; 79():7-19. PubMed ID: 29355784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic clustering via branched deep learning enhances personalization of stress prediction from mobile sensor data.
    Luo Y; Deznabi I; Shaw A; Simsiri N; Rahman T; Fiterau M
    Sci Rep; 2024 Mar; 14(1):6631. PubMed ID: 38503794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptation Strategies for Personalized Gait Neuroprosthetics.
    Koelewijn AD; Audu M; Del-Ama AJ; Colucci A; Font-Llagunes JM; Gogeascoechea A; Hnat SK; Makowski N; Moreno JC; Nandor M; Quinn R; Reichenbach M; Reyes RD; Sartori M; Soekadar S; Triolo RJ; Vermehren M; Wenger C; Yavuz US; Fey D; Beckerle P
    Front Neurorobot; 2021; 15():750519. PubMed ID: 34975445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Personalization Dimensions for MHealth to Improve Behavior Change: A Scoping Review.
    Gosetto L; Ehrler F; Falquet G
    Stud Health Technol Inform; 2020 Nov; 275():77-81. PubMed ID: 33227744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition.
    Almaslukh B; Artoli AM; Al-Muhtadi J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Deep-Learning Model for Subject-Independent Human Emotion Recognition Using Electrodermal Activity Sensors.
    Al Machot F; Elmachot A; Ali M; Al Machot E; Kyamakya K
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Utilizing Smartphone-Based Machine Learning in Medical Monitor Data Collection: Seven Segment Digit Recognition.
    Shenoy VN; Aalami OO
    AMIA Annu Symp Proc; 2017; 2017():1564-1570. PubMed ID: 29854226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Passive Sensor Data Based Future Mood, Health, and Stress Prediction: User Adaptation Using Deep Learning.
    Yu H; Sano A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5884-5887. PubMed ID: 33019313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Smartphone-Based Activity Recognition in a Pedestrian Navigation Context.
    Jackermeier R; Ludwig B
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34067137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perceptions of the feasibility and acceptability of a smartphone application for the treatment of binge eating disorders: Qualitative feedback from a user population and clinicians.
    Juarascio AS; Goldstein SP; Manasse SM; Forman EM; Butryn ML
    Int J Med Inform; 2015 Oct; 84(10):808-16. PubMed ID: 26113461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Personalized response generation by Dual-learning based domain adaptation.
    Yang M; Tu W; Qu Q; Zhao Z; Chen X; Zhu J
    Neural Netw; 2018 Jul; 103():72-82. PubMed ID: 29665538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices.
    He Z; Zhang X; Cao Y; Liu Z; Zhang B; Wang X
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29673171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sensor Data Acquisition and Multimodal Sensor Fusion for Human Activity Recognition Using Deep Learning.
    Chung S; Lim J; Noh KJ; Kim G; Jeong H
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SmartFall: A Smartwatch-Based Fall Detection System Using Deep Learning.
    Mauldin TR; Canby ME; Metsis V; Ngu AHH; Rivera CC
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30304768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and Clinical Evaluation of a Web-Based Upper Limb Home Rehabilitation System Using a Smartwatch and Machine Learning Model for Chronic Stroke Survivors: Prospective Comparative Study.
    Chae SH; Kim Y; Lee KS; Park HS
    JMIR Mhealth Uhealth; 2020 Jul; 8(7):e17216. PubMed ID: 32480361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.