These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33374853)

  • 1. Crack Identification in Necked Double Shear Lugs by Means of the Electro-Mechanical Impedance Method.
    Winklberger M; Kralovec C; Humer C; Heftberger P; Schagerl M
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Influence of Capillary-Based Structural Health Monitoring on Fatigue Crack Initiation and Propagation in Straight Lugs.
    Moonens M; Wyart E; De Baere D; Hinderdael M; Ertveldt J; Jardon Z; Arroud G; Guillaume P
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31547387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue Crack Propagation Estimation Based on Direct Strain Measurement during a Full-Scale Fatigue Test.
    Reymer P; Leski A; Dziendzikowski M
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additively Manufactured Composite Lug with Continuous Carbon Fibre Steering Based on Finite Element Analysis.
    Savandaiah C; Sieberer S; Steinbichler G
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35269052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue-Crack Detection and Monitoring through the Scattered-Wave Two-Dimensional Cross-Correlation Imaging Method Using Piezoelectric Transducers.
    Xiao W; Yu L; Joseph R; Giurgiutiu V
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Damage Indexing Method for Shear Critical Tubular Reinforced Concrete Structures based on Crack Image Analysis.
    Yang YS; Chang CH; Wu CL
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31590250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time Reverse Modeling of Damage Detection in Underwater Concrete Beams Using Piezoelectric Intelligent Modules.
    Liang J; Chen B; Shao C; Li J; Wu B
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and monitoring of cracks using mechanical impedance of rotor-bearing system.
    Prabhakar S; Sekhar AS; Mohanty AR
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2351-9. PubMed ID: 11757925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Experimental Study of Damage Detection on Typical Joints of Jackets Platform Based on Electro-Mechanical Impedance Technique.
    Ali L; Khan S; Iqbal N; Bashmal S; Hameed H; Bai Y
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A FEM-based method to determine the complex material properties of piezoelectric disks.
    Pérez N; Carbonari RC; Andrade MA; Buiochi F; Adamowski JC
    Ultrasonics; 2014 Aug; 54(6):1631-41. PubMed ID: 24735932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the Enhancement Interactions between Double Parallel Cracks on Fatigue Growth Behaviors.
    Han Z; Qian C; Li H
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32630290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and Numerical Study of Concrete Fracture Behavior with Multiple Cracks Based on the Meso-Model.
    Wang Z; Zhang W; Huang Y
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature Effects on Electromechanical Response of Deposited Piezoelectric Sensors Used in Structural Health Monitoring of Aerospace Structures.
    Hoshyarmanesh H; Ghodsi M; Kim M; Cho HH; Park HH
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lamb Wave-Minimum Sampling Variance Particle Filter-Based Fatigue Crack Prognosis.
    Yang W; Gao P
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic surface crack characterization on complex geometries using surface waves.
    Masserey B; Aebi L; Mazza E
    Ultrasonics; 2006 Dec; 44 Suppl 1():e957-61. PubMed ID: 16797633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiphysics Simulation of Low-Amplitude Acoustic Wave Detection by Piezoelectric Wafer Active Sensors Validated by In-Situ AE-Fatigue Experiment.
    Bhuiyan MY; Giurgiutiu V
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28817081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibration-Based In-Situ Detection and Quantification of Delamination in Composite Plates.
    Mei H; Migot A; Haider MF; Joseph R; Bhuiyan MY; Giurgiutiu V
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30978968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sensor locations on air-coupled surface wave transmission measurements across a surface-breaking crack.
    Kee SH; Zhu J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):427-36. PubMed ID: 21342828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for crack sizing using Laser Doppler Vibrometer measurements of Surface Acoustic Waves.
    Longo R; Vanlanduit S; Vanherzeele J; Guillaume P
    Ultrasonics; 2010 Jan; 50(1):76-80. PubMed ID: 19732928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of cracks at rivet holes using guided waves.
    Fromme P; Sayir MB
    Ultrasonics; 2002 May; 40(1-8):199-203. PubMed ID: 12159932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.