These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
383 related articles for article (PubMed ID: 33374962)
1. Identification of Dipeptidyl Peptidase-4 and α-Amylase Inhibitors from Quek A; Kassim NK; Ismail A; Latif MAM; Shaari K; Tan DC; Lim PC Molecules; 2020 Dec; 26(1):. PubMed ID: 33374962 [TBL] [Abstract][Full Text] [Related]
2. α-Amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory effects of Quek A; Kassim NK; Lim PC; Tan DC; Mohammad Latif MA; Ismail A; Shaari K; Awang K Pharm Biol; 2021 Dec; 59(1):964-973. PubMed ID: 34347568 [TBL] [Abstract][Full Text] [Related]
3. Inhibitory effect of chestnut (Castanea mollissima Blume) inner skin extract on the activity of α-amylase, α-glucosidase, dipeptidyl peptidase IV and in vitro digestibility of starches. Zhang Y; Yang Z; Liu G; Wu Y; Ouyang J Food Chem; 2020 Sep; 324():126847. PubMed ID: 32344340 [TBL] [Abstract][Full Text] [Related]
4. Unveiling anti-diabetic potential of new thiazole-sulfonamide derivatives: Design, synthesis, in vitro bio-evaluation targeting DPP-4, α-glucosidase, and α-amylase with in-silico ADMET and docking simulation. Khamees Thabet H; Ammar YA; Imran M; Hamdy Helal M; Ibrahim Alaqel S; Alshehri A; Ash Mohd A; Abusaif MS; Ragab A Bioorg Chem; 2024 Oct; 151():107671. PubMed ID: 39067419 [TBL] [Abstract][Full Text] [Related]
5. Standardized Emblica officinalis fruit extract inhibited the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase-4 and displayed antioxidant potential. Majeed M; Majeed S; Mundkur L; Nagabhushanam K; Arumugam S; Beede K; Ali F J Sci Food Agric; 2020 Jan; 100(2):509-516. PubMed ID: 31487036 [TBL] [Abstract][Full Text] [Related]
6. Steroidal saponins from Trillium govanianum as α-amylase, α-glucosidase, and dipeptidyl peptidase IV inhibitory agents. Suresh PS; Singh PP; Padwad YS; Sharma U J Pharm Pharmacol; 2021 Mar; 73(4):487-495. PubMed ID: 33793831 [TBL] [Abstract][Full Text] [Related]
7. In Vitro Evaluation of the Anti-Diabetic Potential of Aqueous Acetone Akinyede KA; Oyewusi HA; Hughes GD; Ekpo OE; Oguntibeju OO Molecules; 2021 Dec; 27(1):. PubMed ID: 35011387 [TBL] [Abstract][Full Text] [Related]
8. Identification and molecular docking study of sugarcane leaf-derived compounds as potent dipeptidyl peptidase IV, α-glucosidase, and α-amylase inhibitors. Kan R; Ren P; Wu A; Tang Q; Kong B; Xue C J Sci Food Agric; 2023 Aug; 103(11):5388-5400. PubMed ID: 37038045 [TBL] [Abstract][Full Text] [Related]
9. Phytochemical Analysis, Network Pharmacology and in Silico Investigations on Mahomoodally MF; Picot-Allain MCN; Zengin G; Llorent-Martínez EJ; Abdullah HH; Ak G; Senkardes I; Chiavaroli A; Menghini L; Recinella L; Brunetti L; Leone S; Orlando G; Ferrante C Molecules; 2020 May; 25(10):. PubMed ID: 32455936 [No Abstract] [Full Text] [Related]
10. Inhibitory evaluation of Zabidi NA; Ishak NA; Hamid M; Ashari SE; Mohammad Latif MA J Enzyme Inhib Med Chem; 2021 Dec; 36(1):109-121. PubMed ID: 33249946 [TBL] [Abstract][Full Text] [Related]
11. Phytochemical Profiling, GC-MS Analysis and α-Amylase Inhibitory Potential of Ethanolic Extract of Singla RK; Dubey AK Endocr Metab Immune Disord Drug Targets; 2019; 19(4):419-442. PubMed ID: 30484412 [TBL] [Abstract][Full Text] [Related]
12. Dipeptidyl peptidase IV Inhibitory activity of Terminalia arjuna attributes to its cardioprotective effects in experimental diabetes: In silico, in vitro and in vivo analyses. Mohanty IR; Borde M; Kumar C S; Maheshwari U Phytomedicine; 2019 Apr; 57():158-165. PubMed ID: 30668318 [TBL] [Abstract][Full Text] [Related]
13. Antidiabetic potential of Catechu via assays for α-glucosidase, α-amylase, and glucose uptake in adipocytes. Zhang K; Chen XL; Zhao X; Ni JY; Wang HL; Han M; Zhang YM J Ethnopharmacol; 2022 Jun; 291():115118. PubMed ID: 35202712 [TBL] [Abstract][Full Text] [Related]
14. Bioactive Peptides from Germinated Soybean with Anti-Diabetic Potential by Inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes. González-Montoya M; Hernández-Ledesma B; Mora-Escobedo R; Martínez-Villaluenga C Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30249015 [TBL] [Abstract][Full Text] [Related]
15. Anti-diabetic Phenolic Compounds of Black Carrot (Daucus carota Subspecies sativus var. atrorubens Alef.) Inhibit Enzymes of Glucose Metabolism: An in silico and in vitro Validation. Karkute SG; Koley TK; Yengkhom BK; Tripathi A; Srivastava S; Maurya A; Singh B Med Chem; 2018; 14(6):641-649. PubMed ID: 29493459 [TBL] [Abstract][Full Text] [Related]
16. Comparative study of the antidiabetic potential of Tan DC; Idris KI; Kassim NK; Lim PC; Safinar Ismail I; Hamid M; Ng RC Pharm Biol; 2019 Dec; 57(1):345-354. PubMed ID: 31185767 [No Abstract] [Full Text] [Related]
17. Identification of α-Glucosidase Inhibitors from Shah M; Rahman H; Khan A; Bibi S; Ullah O; Ullah S; Ur Rehman N; Murad W; Al-Harrasi A Molecules; 2022 Feb; 27(4):. PubMed ID: 35209111 [TBL] [Abstract][Full Text] [Related]
19. Rapid Identification of Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides from Ruditapes philippinarum Hydrolysate. Liu R; Zhou L; Zhang Y; Sheng NJ; Wang ZK; Wu TZ; Wang XZ; Wu H Molecules; 2017 Oct; 22(10):. PubMed ID: 29027968 [TBL] [Abstract][Full Text] [Related]
20. Model Optimization and In Silico Analysis of Potential Dipeptidyl Peptidase IV Antagonists from GC-MS Identified Compounds in Iheagwam FN; Ogunlana OO; Chinedu SN Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31775302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]