BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33374966)

  • 1. Adsorption Properties for La(III), Ce(III), and Y(III) with Poly(6-acryloylamino-hexyl hydroxamic acid) Resin.
    Cao X; Zhou C; Wang S; Man R
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33374966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of a Novel Polystyrene-Poly(hydroxamic Acid) Copolymer and Its Adsorption Properties for Rare Earth Metal Ions.
    Cao X; Wang Q; Wang S; Man R
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32847090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient poly(6-acryloylamino-N-hydroxyhexanamide) resin for adsorption of heavy metal ions.
    Duan G; Cao Z; Zhong H; Ma X; Wang S
    J Environ Manage; 2022 Apr; 308():114631. PubMed ID: 35131706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel multifunctional ion exchangers for metal ions removal in the presence of citric acid.
    Araucz K; Aurich A; Kołodyńska D
    Chemosphere; 2020 Jul; 251():126331. PubMed ID: 32145572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ce(III) and La(III) ions adsorption using Amberlite XAD-7 resin impregnated with DEHPA extractant: response surface methodology, isotherm and kinetic study.
    Yarahmadi A; Khani MH; Nasiri Zarandi M; Amini Y; Yadollahi A
    Sci Rep; 2023 Jun; 13(1):9959. PubMed ID: 37340031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Static and dynamic studies of lanthanum(III) ion adsorption/desorption from acidic solutions using chelating ion exchangers with different functionalities.
    Kołodyńska D; Fila D; Hubicki Z
    Environ Res; 2020 Dec; 191():110171. PubMed ID: 32919960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of activated carbon-based amino phosphonic acid chelating resin and its adsorption properties for Ce(III) removal.
    Chen T; Yan C; Wang Y; Tang C; Zhou S; Zhao Y; Ma R; Duan P
    Environ Technol; 2015; 36(17):2168-76. PubMed ID: 25730666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Adsorption of Ag⁺ on a New Cyanuric-Thiosemicarbazide Chelating Resin with High Capacity from Acid Solutions.
    Lin G; Wang S; Zhang L; Hu T; Peng J; Cheng S; Fu L
    Polymers (Basel); 2017 Nov; 9(11):. PubMed ID: 30965873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel high-gluten flour physically cross-linked graphene oxide composites: Hydrothermal fabrication and adsorption properties for rare earth ions.
    Xu X; Zou J; Teng J; Liu Q; Jiang XY; Jiao FP; Yu JG; Chen XQ
    Ecotoxicol Environ Saf; 2018 Dec; 166():1-10. PubMed ID: 30240929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective recovery of copper from copper tailings and wastewater using chelating resins with bis-picolylamine functional groups.
    Ibebunjo K; El Ouardi Y; Bediako JK; Iurchenkova A; Repo E
    Heliyon; 2024 Mar; 10(6):e27766. PubMed ID: 38515676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-efficiency adsorption removal for Cu(II) and Ni(II) using a novel acylamino dihydroxamic acid chelating resin.
    Duan G; Li X; Ma X; Zhong W; Wang S
    Sci Total Environ; 2023 Mar; 864():160984. PubMed ID: 36565866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ce(ΙΙΙ) and La(ΙΙΙ) ions adsorption through Amberlite XAD-7 resin impregnated via CYANEX-272 extractant.
    Yarahmadi A; Khani MH; Nasiri Zarandi M; Amini Y
    Sci Rep; 2023 Apr; 13(1):6930. PubMed ID: 37117280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methodical study of chromium (VI) ion adsorption from aqueous solution using low-cost agro-waste material: isotherm, kinetic, and thermodynamic studies.
    Akiode OK; Adetoro A; Anene AI; Afolabi SO; Alli YA
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):48036-48047. PubMed ID: 36749516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and equilibrium studies on the recovery of praseodymium (III), dysprosium (III) and yttrium (III) using acidic cation exchange resin.
    Masry BA; Abu Elgoud EM; Rizk SE
    BMC Chem; 2022 May; 16(1):37. PubMed ID: 35614500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption behavior and mechanism of Serratia marcescens for Eu(III) in rare earth wastewater.
    Shen J; Liang C; Zhong J; Xiao M; Zhou J; Liu J; Liu J; Ren S
    Environ Sci Pollut Res Int; 2021 Oct; 28(40):56915-56926. PubMed ID: 34076818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of graphene oxide/cellulose composites in ionic liquid for Ce (III) removal.
    Hao Y; Cui Y; Peng J; Zhao N; Li S; Zhai M
    Carbohydr Polym; 2019 Mar; 208():269-275. PubMed ID: 30658800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Jordanian and standard diatomaceous earth as an adsorbent for removal of Sm(III) and Nd(III) from aqueous solution.
    Hamadneh I; Alatawi A; Zalloum R; Albuqain R; Alsotari S; Khalili FI; Al-Dujaili AH
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20969-20980. PubMed ID: 31115818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of uranium from aqueous solution by PAMAM dendron functionalized styrene divinylbenzene.
    Ilaiyaraja P; Deb AK; Sivasubramanian K; Ponraju D; Venkatraman B
    J Hazard Mater; 2013 Apr; 250-251():155-66. PubMed ID: 23435203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved recovery selectivity of rare earth elements from mining wastewater utilizing phytosynthesized iron nanoparticles.
    Yang Y; Yan Q; Weng X; Owens G; Chen Z
    Water Res; 2023 Oct; 244():120486. PubMed ID: 37633210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient removal of rare earth elements by two-dimensional titanium carbide nanosheets as impacted via water chemistry.
    Lv Y; Chen L; Zhang A; Sheng G; Liao Q
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90936-90948. PubMed ID: 37468781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.