These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 33375035)
1. Effect of Mixing Ratio of Oppositely Charged Block Copolymers on Polyion Complex Micelles for In Vivo Application. Nakamura N; Mochida Y; Toh K; Fukushima S; Anraku Y; Cabral H Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33375035 [TBL] [Abstract][Full Text] [Related]
2. Functional Polyion Complex Micelles for Potential Targeted Hydrophobic Drug Delivery. Kalinova R; Dimitrov I Molecules; 2022 Mar; 27(7):. PubMed ID: 35408579 [TBL] [Abstract][Full Text] [Related]
3. Physicochemical properties of pH-controlled polyion complex (PIC) micelles of poly(acrylic acid)-based double hydrophilic block copolymers and various polyamines. Warnant J; Marcotte N; Reboul J; Layrac G; Aqil A; Jerôme C; Lerner DA; Gérardin C Anal Bioanal Chem; 2012 May; 403(5):1395-404. PubMed ID: 22453608 [TBL] [Abstract][Full Text] [Related]
4. Preparation of Polyion Complex Micelles Using Block Copolymers for SiRNA Delivery. Kim HJ; Zheng M; Miyata K; Kataoka K Methods Mol Biol; 2016; 1364():89-103. PubMed ID: 26472445 [TBL] [Abstract][Full Text] [Related]
5. Preparation of Water-Soluble Polyion Complex (PIC) Micelles with Random Copolymers Containing Pendant Quaternary Ammonium and Sulfonate Groups. Bhowmik S; Pham TT; Takahashi R; Kim D; Matsuoka H; Ishihara K; Yusa SI Langmuir; 2023 Jun; 39(23):8120-8129. PubMed ID: 37235722 [TBL] [Abstract][Full Text] [Related]
6. Polyion complex micelle MRI contrast agents from poly(ethylene glycol)-b-poly(l-lysine) block copolymers having Gd-DOTA; preparations and their control of T(1)-relaxivities and blood circulation characteristics. Shiraishi K; Kawano K; Maitani Y; Yokoyama M J Control Release; 2010 Dec; 148(2):160-7. PubMed ID: 20804796 [TBL] [Abstract][Full Text] [Related]
7. Block catiomer with flexible cationic segment enhances complexation with siRNA and the delivery performance in vitro. Yang W; Miyazaki T; Chen P; Hong T; Naito M; Miyahara Y; Matsumoto A; Kataoka K; Miyata K; Cabral H Sci Technol Adv Mater; 2021; 22(1):850-863. PubMed ID: 34658669 [TBL] [Abstract][Full Text] [Related]
8. Pronounced activity of enzymes through the incorporation into the core of polyion complex micelles made from charged block copolymers. Harada A; Kataoka K J Control Release; 2001 May; 72(1-3):85-91. PubMed ID: 11389987 [TBL] [Abstract][Full Text] [Related]
9. Preparation and characterization of polyion complex micelles with phosphobetaine shells. Nakai K; Nishiuchi M; Inoue M; Ishihara K; Sanada Y; Sakurai K; Yusa S Langmuir; 2013 Aug; 29(31):9651-61. PubMed ID: 23845059 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of polyion complex micelles with a novel thermosensitive poly(2-isopropyl-2-oxazoline) shell via the complexation of oppositely charged block ionomers. Park JS; Akiyama Y; Yamasaki Y; Kataoka K Langmuir; 2007 Jan; 23(1):138-46. PubMed ID: 17190496 [TBL] [Abstract][Full Text] [Related]
11. Recent Progress in Polyion Complex Nanoparticles with Enhanced Stability for Drug Delivery. Ma X; Zhao T; Ren X; Lin H; He P Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000726 [TBL] [Abstract][Full Text] [Related]
12. Stopped-flow kinetic studies of the formation and disintegration of polyion complex micelles in aqueous solution. Zhang J; Chen S; Zhu Z; Liu S Phys Chem Chem Phys; 2014 Jan; 16(1):117-27. PubMed ID: 24226471 [TBL] [Abstract][Full Text] [Related]
13. Influence of RNA Strand Rigidity on Polyion Complex Formation with Block Catiomers. Hayashi K; Chaya H; Fukushima S; Watanabe S; Takemoto H; Osada K; Nishiyama N; Miyata K; Kataoka K Macromol Rapid Commun; 2016 Mar; 37(6):486-93. PubMed ID: 26765970 [TBL] [Abstract][Full Text] [Related]
15. Complex coacervate core micelles. Voets IK; de Keizer A; Cohen Stuart MA Adv Colloid Interface Sci; 2009; 147-148():300-18. PubMed ID: 19038373 [TBL] [Abstract][Full Text] [Related]
16. Effective design of PEGylated polyion complex (PIC) nanoparticles for enhancing PIC internalisation in cells utilising block copolymer combinations with mismatched ionic chain lengths. Aulia F; Matsuba H; Adachi S; Yamada T; Nakase I; Nii T; Mori T; Katayama Y; Kishimura A J Mater Chem B; 2024 Feb; 12(7):1826-1836. PubMed ID: 38305408 [TBL] [Abstract][Full Text] [Related]
17. Physicochemical properties and nuclease resistance of antisense-oligodeoxynucleotides entrapped in the core of polyion complex micelles composed of poly(ethylene glycol)-poly(L-lysine) block copolymers. Harada A; Togawa H; Kataoka K Eur J Pharm Sci; 2001 Apr; 13(1):35-42. PubMed ID: 11292566 [TBL] [Abstract][Full Text] [Related]
18. Formation of Polyion Complex (PIC) Micelles and Vesicles with Anionic pH-Responsive Unimer Micelles and Cationic Diblock Copolymers in Water. Ohno S; Ishihara K; Yusa S Langmuir; 2016 Apr; 32(16):3945-53. PubMed ID: 27048989 [TBL] [Abstract][Full Text] [Related]
19. pH-Regulated Reversible Transition Between Polyion Complexes (PIC) and Hydrogen-Bonding Complexes (HBC) with Tunable Aggregation-Induced Emission. Tian S; Liu G; Wang X; Wu T; Yang J; Ye X; Zhang G; Hu J; Liu S ACS Appl Mater Interfaces; 2016 Feb; 8(6):3693-702. PubMed ID: 26584477 [TBL] [Abstract][Full Text] [Related]
20. Polymeric Nanocarriers with Controlled Chain Flexibility Boost mRNA Delivery In Vivo through Enhanced Structural Fastening. Miyazaki T; Uchida S; Nagatoishi S; Koji K; Hong T; Fukushima S; Tsumoto K; Ishihara K; Kataoka K; Cabral H Adv Healthc Mater; 2020 Aug; 9(16):e2000538. PubMed ID: 32583633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]