These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 33375115)
1. Pursuing the Complexity of Alzheimer's Disease: Discovery of Fluoren-9-Amines as Selective Butyrylcholinesterase Inhibitors and Konecny J; Misiachna A; Hrabinova M; Pulkrabkova L; Benkova M; Prchal L; Kucera T; Kobrlova T; Finger V; Kolcheva M; Kortus S; Jun D; Valko M; Horak M; Soukup O; Korabecny J Biomolecules; 2020 Dec; 11(1):. PubMed ID: 33375115 [TBL] [Abstract][Full Text] [Related]
2. Structure-activity relationships of dually-acting acetylcholinesterase inhibitors derived from tacrine on N-methyl-d-Aspartate receptors. Gorecki L; Misiachna A; Damborsky J; Dolezal R; Korabecny J; Cejkova L; Hakenova K; Chvojkova M; Karasova JZ; Prchal L; Novak M; Kolcheva M; Kortus S; Vales K; Horak M; Soukup O Eur J Med Chem; 2021 Jul; 219():113434. PubMed ID: 33892271 [TBL] [Abstract][Full Text] [Related]
3. Combination of Memantine and 6-Chlorotacrine as Novel Multi-Target Compound against Alzheimer's Disease. Kaniakova M; Nepovimova E; Kleteckova L; Skrenkova K; Holubova K; Chrienova Z; Hepnarova V; Kucera T; Kobrlova T; Vales K; Korabecny J; Soukup O; Horak M Curr Alzheimer Res; 2019; 16(9):821-833. PubMed ID: 30819076 [TBL] [Abstract][Full Text] [Related]
4. The concept of hybrid molecules of tacrine and benzyl quinolone carboxylic acid (BQCA) as multifunctional agents for Alzheimer's disease. Hepnarova V; Korabecny J; Matouskova L; Jost P; Muckova L; Hrabinova M; Vykoukalova N; Kerhartova M; Kucera T; Dolezal R; Nepovimova E; Spilovska K; Mezeiova E; Pham NL; Jun D; Staud F; Kaping D; Kuca K; Soukup O Eur J Med Chem; 2018 Apr; 150():292-306. PubMed ID: 29533874 [TBL] [Abstract][Full Text] [Related]
5. Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT Więckowska A; Kołaczkowski M; Bucki A; Godyń J; Marcinkowska M; Więckowski K; Zaręba P; Siwek A; Kazek G; Głuch-Lutwin M; Mierzejewski P; Bienkowski P; Sienkiewicz-Jarosz H; Knez D; Wichur T; Gobec S; Malawska B Eur J Med Chem; 2016 Nov; 124():63-81. PubMed ID: 27560283 [TBL] [Abstract][Full Text] [Related]
6. Conjugates of γ-Carbolines and Phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer Disease. Makhaeva GF; Lushchekina SV; Boltneva NP; Sokolov VB; Grigoriev VV; Serebryakova OG; Vikhareva EA; Aksinenko AY; Barreto GE; Aliev G; Bachurin SO Sci Rep; 2015 Aug; 5():13164. PubMed ID: 26281952 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and Biological Evaluation of New Cholinesterase Inhibitors for Alzheimer's Disease. Hussein W; Sağlık BN; Levent S; Korkut B; Ilgın S; Özkay Y; Kaplancıklı ZA Molecules; 2018 Aug; 23(8):. PubMed ID: 30110946 [TBL] [Abstract][Full Text] [Related]
8. Amaryllidaceae Alkaloids of Norbelladine-Type as Inspiration for Development of Highly Selective Butyrylcholinesterase Inhibitors: Synthesis, Biological Activity Evaluation, and Docking Studies. Mamun AA; Pidaný F; Hulcová D; Maříková J; Kučera T; Schmidt M; Catapano MC; Hrabinová M; Jun D; Múčková L; Kuneš J; Janoušek J; Andrýs R; Nováková L; Peřinová R; Maafi N; Soukup O; Korábečný J; Cahlíková L Int J Mol Sci; 2021 Aug; 22(15):. PubMed ID: 34361074 [TBL] [Abstract][Full Text] [Related]
9. Design, synthesis, and biological evaluation of selective and potent Carbazole-based butyrylcholinesterase inhibitors. Ghobadian R; Nadri H; Moradi A; Bukhari SNA; Mahdavi M; Asadi M; Akbarzadeh T; Khaleghzadeh-Ahangar H; Sharifzadeh M; Amini M Bioorg Med Chem; 2018 Sep; 26(17):4952-4962. PubMed ID: 30190181 [TBL] [Abstract][Full Text] [Related]
10. A Systematic Review on Donepezil-based Derivatives as Potential Cholinesterase Inhibitors for Alzheimer's Disease. Korabecny J; Spilovska K; Mezeiova E; Benek O; Juza R; Kaping D; Soukup O Curr Med Chem; 2019; 26(30):5625-5648. PubMed ID: 29768996 [TBL] [Abstract][Full Text] [Related]
11. Butyrylcholinesterase Protein Ends in the Pathogenesis of Alzheimer's Disease-Could Jasiecki J; Wasąg B Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31601022 [No Abstract] [Full Text] [Related]
12. In silico modeling of the specific inhibitory potential of thiophene-2,3-dihydro-1,5-benzothiazepine against BChE in the formation of beta-amyloid plaques associated with Alzheimer's disease. Ul-Haq Z; Khan W; Kalsoom S; Ansari FL Theor Biol Med Model; 2010 Jun; 7():22. PubMed ID: 20550720 [TBL] [Abstract][Full Text] [Related]
13. In Vitro and In Silico Acetylcholinesterase Inhibitory Activity of Thalictricavine and Canadine and Their Predicted Penetration across the Blood-Brain Barrier. Chlebek J; Korábečný J; Doležal R; Štěpánková Š; Pérez DI; Hošťálková A; Opletal L; Cahlíková L; Macáková K; Kučera T; Hrabinová M; Jun D Molecules; 2019 Apr; 24(7):. PubMed ID: 30959739 [TBL] [Abstract][Full Text] [Related]
14. Discovery of Selective Butyrylcholinesterase (BChE) Inhibitors through a Combination of Computational Studies and Biological Evaluations. Zhou Y; Lu X; Yang H; Chen Y; Wang F; Li J; Tang Z; Cheng X; Yang Y; Xu L; Xia Q Molecules; 2019 Nov; 24(23):. PubMed ID: 31757047 [TBL] [Abstract][Full Text] [Related]