BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33375171)

  • 21. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of anthocyanin-rich W
    Li J; Guo C; Cai S; Yi J; Zhou L
    Food Res Int; 2023 Jun; 168():112782. PubMed ID: 37120230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insights into the relationship between structure and rheological properties of starch gels in hot-extrusion 3D printing.
    Zeng X; Chen H; Chen L; Zheng B
    Food Chem; 2021 Apr; 342():128362. PubMed ID: 33077283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pickering emulsion gels stabilized by high hydrostatic pressure-induced whey protein isolate gel particles: Characterization and encapsulation of curcumin.
    Lv P; Wang D; Dai L; Wu X; Gao Y; Yuan F
    Food Res Int; 2020 Jun; 132():109032. PubMed ID: 32331631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning whey protein isolate/hyaluronic acid emulsion gel structure to enhance quercetin bioaccessibility and in vitro digestive characteristics.
    Wang N; Zhang K; Chen Y; Hu J; Jiang Y; Wang X; Ban Q
    Food Chem; 2023 Dec; 429():136910. PubMed ID: 37478604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions.
    Kwak C; Young Ryu S; Park H; Lim S; Yang J; Kim J; Hyung Kim J; Lee J
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):81-89. PubMed ID: 32814225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differences of wax-based emulsion gel in 3D printing performance: Crystal distribution and droplet stability.
    Gu X; Cui L; Meng Z
    Food Chem; 2023 Dec; 428():136760. PubMed ID: 37402346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of fat-reduced water-in-oil emulsion and the application in 3D printing.
    Wang M; Zhang J; Fan L; Li J
    Food Res Int; 2023 Oct; 172():113118. PubMed ID: 37689880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Oil Content on the Printability of Coconut Cream.
    Lee CP; Hoo JY; Hashimoto M
    Int J Bioprint; 2021; 7(2):354. PubMed ID: 33997437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rheological and microstructural characterisation of heat-induced whey protein isolate gels affected by the addition of caseinomacropeptide.
    Guedes PV; de Freitas RA; Franco CRC; Cândido LMB
    J Dairy Res; 2022 Feb; ():1-8. PubMed ID: 35225181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of 3D printability of composite dairy matrix by correlating with its rheological properties.
    Joshi S; Sahu JK; Bareen MA; Prakash S; Bhandari B; Sharma N; Naik SN
    Food Res Int; 2021 Mar; 141():110111. PubMed ID: 33641978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing.
    Lu Y; Rai R; Nitin N
    Food Res Int; 2023 Nov; 173(Pt 2):113384. PubMed ID: 37803721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viability Study on the Use of Three Different Gels for 3D Food Printing.
    Matas A; Molina-Montero C; Igual M; García-Segovia P; Martínez-Monzó J
    Gels; 2023 Sep; 9(9):. PubMed ID: 37754417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Explaining the texture properties of whey protein isolate/starch co-gels from fracture structures.
    Fu W; Nakamura T
    Biosci Biotechnol Biochem; 2017 Apr; 81(4):839-847. PubMed ID: 28140770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of the emulsion droplet type on the rheological characteristics and microstructure of rennet gels from reconstituted milk.
    Gaygadzhiev Z; Hill A; Corredig M
    J Dairy Res; 2009 Aug; 76(3):349-55. PubMed ID: 19519978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and characterization of emulsion gels prepared via gliadin-based colloidal particles and gellan gum with tunable rheological properties for 3D printed dysphagia diet.
    Hou Y; Sun Y; Zhang P; Wang H; Tan M
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126839. PubMed ID: 37696376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New insights into food O/W emulsion gels: Strategies of reinforcing mechanical properties and outlook of being applied to food 3D printing.
    Li X; Fan L; Liu Y; Li J
    Crit Rev Food Sci Nutr; 2023; 63(11):1564-1586. PubMed ID: 34407718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The synergistic effect of κ-carrageenan and l-lysine on the 3D printability of yellow flesh peach gels: The importance of material elasticity in the printing process.
    Shi R; Liu Z; Yi J; Hu X; Guo C
    Int J Biol Macromol; 2024 Jan; 254(Pt 3):127920. PubMed ID: 37944739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gelation of oil-in-water emulsions stabilized by heat-denatured and nanofibrillated whey proteins through ion bridging or citric acid-mediated cross-linking.
    Mohammadian M; Salami M; Emam-Djomeh Z; Momen S; Moosavi-Movahedi AA
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2247-2258. PubMed ID: 30125633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.