These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 33375196)
1. Influence of Density on Foam Collapse under Burning. Baguian AF; Ouiminga SK; Longuet C; Caro-Bretelle AS; Corn S; Bere A; Sonnier R Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33375196 [TBL] [Abstract][Full Text] [Related]
2. Combustion behaviour and dominant shrinkage mechanism of flexible polyurethane foam in the cone calorimeter test. Wang Y; Kang W; Chen C; Zhang X; Yang L; Chen X; Cui G; Zhang Y; Zhang F; Li S J Hazard Mater; 2019 Mar; 365():395-404. PubMed ID: 30448552 [TBL] [Abstract][Full Text] [Related]
3. Fire Phenomena of Rigid Polyurethane Foams. Günther M; Lorenzetti A; Schartel B Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961091 [TBL] [Abstract][Full Text] [Related]
4. Burning Behaviour of Rigid Polyurethane Foams with Histidine and Modified Graphene Oxide. Sałasińska K; Leszczyńska M; Celiński M; Kozikowski P; Kowiorski K; Lipińska L Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33802345 [TBL] [Abstract][Full Text] [Related]
5. Extreme Heat Shielding of Clay/Chitosan Nanobrick Wall on Flexible Foam. Lazar S; Carosio F; Davesne AL; Jimenez M; Bourbigot S; Grunlan J ACS Appl Mater Interfaces; 2018 Sep; 10(37):31686-31696. PubMed ID: 30148595 [TBL] [Abstract][Full Text] [Related]
6. Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties. Pan H; Wang W; Pan Y; Song L; Hu Y; Liew KM ACS Appl Mater Interfaces; 2015 Jan; 7(1):101-11. PubMed ID: 25496211 [TBL] [Abstract][Full Text] [Related]
7. Influence of the Characteristics of Expandable Graphite on the Morphology, Thermal Properties, Fire Behaviour and Compression Performance of a Rigid Polyurethane Foam. Acuña P; Li Z; Santiago-Calvo M; Villafañe F; Rodríguez-Perez MÁ; Wang DY Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960151 [TBL] [Abstract][Full Text] [Related]
8. Nano-fibrillated cellulose-hydroxyapatite based composite foams with excellent fire resistance. Guo W; Wang X; Zhang P; Liu J; Song L; Hu Y Carbohydr Polym; 2018 Sep; 195():71-78. PubMed ID: 29805026 [TBL] [Abstract][Full Text] [Related]
9. Orientation effect on cone calorimeter test results to assess fire hazard of materials. Tsai KC J Hazard Mater; 2009 Dec; 172(2-3):763-72. PubMed ID: 19665837 [TBL] [Abstract][Full Text] [Related]
10. The preparation of starch derivatives reacted with urea-phosphoric acid and effects on fire performance of expandable polystyrene foams. Ji W; Wang D; Guo J; Fei B; Gu X; Li H; Sun J; Zhang S Carbohydr Polym; 2020 Apr; 233():115841. PubMed ID: 32059893 [TBL] [Abstract][Full Text] [Related]
11. Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. Rao WH; Liao W; Wang H; Zhao HB; Wang YZ J Hazard Mater; 2018 Oct; 360():651-660. PubMed ID: 30153630 [TBL] [Abstract][Full Text] [Related]
12. Thermal conductivity and combustion properties of wheat gluten foams. Blomfeldt TO; Nilsson F; Holgate T; Xu J; Johansson E; Hedenqvist MS ACS Appl Mater Interfaces; 2012 Mar; 4(3):1629-35. PubMed ID: 22332837 [TBL] [Abstract][Full Text] [Related]
13. Burning characteristics of power cables with cone calorimeter. Bai Z Heliyon; 2024 Feb; 10(3):e25103. PubMed ID: 38318052 [TBL] [Abstract][Full Text] [Related]
14. Fire Behavior of Thermally Thin Materials in Cone Calorimeter. El Gazi M; Sonnier R; Giraud S; Batistella M; Basak S; Dumazert L; Hajj R; El Hage R Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33921080 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of Nanostructured/Macroscopic Low-Density Copper Foams Based on Metal-Coated Polymer Core-Shell Particles. Kim SH; Bazin N; Shaw JI; Yoo JH; Worsley MA; Satcher JH; Sain JD; Kuntz JD; Kucheyev SO; Baumann TF; Hamza AV ACS Appl Mater Interfaces; 2016 Dec; 8(50):34706-34714. PubMed ID: 27998136 [TBL] [Abstract][Full Text] [Related]
17. Experimental Study of Fire Hazards of Thermal-Insulation Material in Diesel Locomotive: Aluminum-Polyurethane. Zhang T; Zhou X; Yang L Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773295 [TBL] [Abstract][Full Text] [Related]
18. Cage Nanofillers' Influence on Fire Hazard and Toxic Gases Emitted during Thermal Decomposition of Polyurethane Foam. Głowacki A; Rybiński P; Żelezik M; Mirkhodjaev UZ Polymers (Basel); 2024 Feb; 16(5):. PubMed ID: 38475328 [TBL] [Abstract][Full Text] [Related]
19. Understanding the Flame Retardant Mechanism of Intumescent Flame Retardant on Improving the Fire Safety of Rigid Polyurethane Foam. Lee SH; Lee SG; Lee JS; Ma BC Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433031 [TBL] [Abstract][Full Text] [Related]
20. Thermal Insulating Rigid Polyurethane Foams with Bio-Polyol from Rapeseed Oil Modified by Phosphorus Additive and Reactive Flame Retardants. Zemła M; Prociak A; Michałowski S; Cabulis U; Kirpluks M; Simakovs K Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]