BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 33375395)

  • 1. MNBDR: A Module Network Based Method for Drug Repositioning.
    Chen HG; Zhou XH
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33375395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repositioning drugs by targeting network modules: a Parkinson's disease case study.
    Yue Z; Arora I; Zhang EY; Laufer V; Bridges SL; Chen JY
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):532. PubMed ID: 29297292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genome-wide positioning systems network algorithm for in silico drug repurposing.
    Cheng F; Lu W; Liu C; Fang J; Hou Y; Handy DE; Wang R; Zhao Y; Yang Y; Huang J; Hill DE; Vidal M; Eng C; Loscalzo J
    Nat Commun; 2019 Aug; 10(1):3476. PubMed ID: 31375661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lung disease network reveals impact of comorbidity on SARS-CoV-2 infection and opportunities of drug repurposing.
    Das AB
    BMC Med Genomics; 2021 Sep; 14(1):226. PubMed ID: 34535131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Novel Drugs for Hepatocellular Carcinoma Based on Multi-Source Random Walk.
    Yu L; Su R; Wang B; Zhang L; Zou Y; Zhang J; Gao L
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):966-977. PubMed ID: 27076463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug repurposing improves disease targeting 11-fold and can be augmented by network module targeting, applied to COVID-19.
    Rivero-García I; Castresana-Aguirre M; Guglielmo L; Guala D; Sonnhammer ELL
    Sci Rep; 2021 Oct; 11(1):20687. PubMed ID: 34667255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug repositioning using drug-disease vectors based on an integrated network.
    Lee T; Yoon Y
    BMC Bioinformatics; 2018 Nov; 19(1):446. PubMed ID: 30463505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Drug Treatment Patterns Based on the Action of Drug and Multilayer Network Model.
    Yu L; Shi Y; Zou Q; Wang S; Zheng L; Gao L
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32708644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating systemic module inference with attract method excavates attractor modules for cyclophosphamide contributing to prostate cancer.
    Sun G; Zhang W; Wang J
    J Cancer Res Ther; 2019 Mar; 15(Supplement):S153-S158. PubMed ID: 30900638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.
    Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network controllability solutions for computational drug repurposing using genetic algorithms.
    Popescu VB; Kanhaiya K; Năstac DI; Czeizler E; Petre I
    Sci Rep; 2022 Jan; 12(1):1437. PubMed ID: 35082323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug Repositioning Inferred from E2F1-Coregulator Interactions Studies for the Prevention and Treatment of Metastatic Cancers.
    Goody D; Gupta SK; Engelmann D; Spitschak A; Marquardt S; Mikkat S; Meier C; Hauser C; Gundlach JP; Egberts JH; Martin H; Schumacher T; Trauzold A; Wolkenhauer O; Logotheti S; Pützer BM
    Theranostics; 2019; 9(5):1490-1509. PubMed ID: 30867845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic.
    Hasankhani A; Bahrami A; Sheybani N; Aria B; Hemati B; Fatehi F; Ghaem Maghami Farahani H; Javanmard G; Rezaee M; Kastelic JP; Barkema HW
    Front Immunol; 2021; 12():789317. PubMed ID: 34975885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microarray and network-based identification of functional modules and pathways of active tuberculosis.
    Bian ZR; Yin J; Sun W; Lin DJ
    Microb Pathog; 2017 Apr; 105():68-73. PubMed ID: 28189733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks.
    Liu H; Song Y; Guan J; Luo L; Zhuang Z
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):539. PubMed ID: 28155639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New drug candidates for treatment of atypical meningiomas: An integrated approach using gene expression signatures for drug repurposing.
    Zador Z; King AT; Geifman N
    PLoS One; 2018; 13(3):e0194701. PubMed ID: 29558515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of key genes and pathways in scleral extracellular matrix remodeling in glaucoma: Potential therapeutic agents discovered using bioinformatics analysis.
    Hu D; Jiang J; Lin Z; Zhang C; Moonasar N; Qian S
    Int J Med Sci; 2021; 18(7):1554-1565. PubMed ID: 33746571
    [No Abstract]   [Full Text] [Related]  

  • 19. Repurposing novel therapeutic candidate drugs for coronavirus disease-19 based on protein-protein interaction network analysis.
    Adhami M; Sadeghi B; Rezapour A; Haghdoost AA; MotieGhader H
    BMC Biotechnol; 2021 Mar; 21(1):22. PubMed ID: 33711981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prioritization of candidate cancer drugs based on a drug functional similarity network constructed by integrating pathway activities and drug activities.
    Di J; Zheng B; Kong Q; Jiang Y; Liu S; Yang Y; Han X; Sheng Y; Zhang Y; Cheng L; Han J
    Mol Oncol; 2019 Oct; 13(10):2259-2277. PubMed ID: 31408580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.