These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1842 related articles for article (PubMed ID: 33375400)

  • 1. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using 3D Convolutional Neural Networks for Tactile Object Recognition with Robotic Palpation.
    Pastor F; Gandarias JM; García-Cerezo AJ; Gómez-de-Gabriel JM
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Application of Deep Learning to Tactile Data for Object Recognition under Visual Guidance.
    Rouhafzay G; Cretu AM
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perception of Tactile Directionality via Artificial Fingerpad Deformation and Convolutional Neural Networks.
    Gutierrez K; Santos VJ
    IEEE Trans Haptics; 2020; 13(4):831-839. PubMed ID: 32092014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning efficient haptic shape exploration with a rigid tactile sensor array.
    Fleer S; Moringen A; Klatzky RL; Ritter H
    PLoS One; 2020; 15(1):e0226880. PubMed ID: 31896135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tactile Object Recognition for Humanoid Robots Using New Designed Piezoresistive Tactile Sensor and DCNN.
    Pohtongkam S; Srinonchat J
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Perception with Tactile Object Recognition in Adaptive Grippers for Human-Robot Interaction.
    Gandarias JM; Gómez-de-Gabriel JM; García-Cerezo AJ
    Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Open-Environment Tactile Sensing System: Toward Simple and Efficient Material Identification.
    Wei X; Wang B; Wu Z; Wang ZL
    Adv Mater; 2022 Jul; 34(29):e2203073. PubMed ID: 35578973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands.
    Atzori M; Cognolato M; Müller H
    Front Neurorobot; 2016; 10():9. PubMed ID: 27656140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Texture Recognition Based on Perception Data from a Bionic Tactile Sensor.
    Huang S; Wu H
    Sensors (Basel); 2021 Aug; 21(15):. PubMed ID: 34372461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning the signatures of the human grasp using a scalable tactile glove.
    Sundaram S; Kellnhofer P; Li Y; Zhu JY; Torralba A; Matusik W
    Nature; 2019 May; 569(7758):698-702. PubMed ID: 31142856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Convolutional Neural Networks Initialized from Pretrained 2D Convolutional Neural Networks for Classification of Industrial Parts.
    Merino I; Azpiazu J; Remazeilles A; Sierra B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Templated Laser-Induced-Graphene-Based Tactile Sensors Enable Wearable Health Monitoring and Texture Recognition via Deep Neural Network.
    Ji J; Zhao W; Wang Y; Li Q; Wang G
    ACS Nano; 2023 Oct; 17(20):20153-20166. PubMed ID: 37801407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AutoTune: Automatically Tuning Convolutional Neural Networks for Improved Transfer Learning.
    Basha SHS; Vinakota SK; Pulabaigari V; Mukherjee S; Dubey SR
    Neural Netw; 2021 Jan; 133():112-122. PubMed ID: 33181405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tactile Transfer Learning and Object Recognition With a Multifingered Hand Using Morphology Specific Convolutional Neural Networks.
    Funabashi S; Yan G; Hongyi F; Schmitz A; Jamone L; Ogata T; Sugano S
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):7587-7601. PubMed ID: 36327180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Vibro-Tactile Perception for Simultaneous Texture Identification, Slip Detection, and Speed Estimation.
    Massalim Y; Kappassov Z; Varol HA
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multidimensional Tactile Sensor with a Thin Compound Eye-Inspired Imaging System.
    Zhang Y; Chen X; Wang MY; Yu H
    Soft Robot; 2022 Oct; 9(5):861-870. PubMed ID: 34619070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facial Expressions Recognition for Human-Robot Interaction Using Deep Convolutional Neural Networks with Rectified Adam Optimizer.
    Melinte DO; Vladareanu L
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32340140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 93.