BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33375410)

  • 21. Advances Toward COVID-19 Therapies Special Issue.
    Neamati N
    J Med Chem; 2022 Feb; 65(4):2713-2715. PubMed ID: 35138859
    [No Abstract]   [Full Text] [Related]  

  • 22. Parsaclisib Is a Next-Generation Phosphoinositide 3-Kinase
    Shin N; Stubbs M; Koblish H; Yue EW; Soloviev M; Douty B; Wang KH; Wang Q; Gao M; Feldman P; Yang G; Hall L; Hansbury M; O'Connor S; Leffet L; Collins R; Katiyar K; He X; Waeltz P; Collier P; Lu J; Li YL; Li Y; Liu PCC; Burn T; Covington M; Diamond S; Shuey D; Roberts A; Yeleswaram S; Hollis G; Metcalf B; Yao W; Huber R; Combs A; Newton R; Scherle P
    J Pharmacol Exp Ther; 2020 Jul; 374(1):211-222. PubMed ID: 32345620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Double-Edged Sword-Cardiovascular Concerns of Potential Anti-COVID-19 Drugs.
    Yu WL; Toh HS; Liao CT; Chang WT
    Cardiovasc Drugs Ther; 2021 Apr; 35(2):205-214. PubMed ID: 32557011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glycyrrhizin Effectively Inhibits SARS-CoV-2 Replication by Inhibiting the Viral Main Protease.
    van de Sand L; Bormann M; Alt M; Schipper L; Heilingloh CS; Steinmann E; Todt D; Dittmer U; Elsner C; Witzke O; Krawczyk A
    Viruses; 2021 Apr; 13(4):. PubMed ID: 33918301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Silico Identification of a Potent Arsenic Based Approved Drug Darinaparsin against SARS-CoV-2: Inhibitor of RNA Dependent RNA polymerase (RdRp) and Essential Proteases.
    Chowdhury T; Roymahapatra G; Mandal SM
    Infect Disord Drug Targets; 2021; 21(4):608-618. PubMed ID: 32718300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brief report: a phase IIa, randomized, double-blind, placebo-controlled trial of apilimod mesylate, an interleukin-12/interleukin-23 inhibitor, in patients with rheumatoid arthritis.
    Krausz S; Boumans MJ; Gerlag DM; Lufkin J; van Kuijk AW; Bakker A; de Boer M; Lodde BM; Reedquist KA; Jacobson EW; O'Meara M; Tak PP
    Arthritis Rheum; 2012 Jun; 64(6):1750-5. PubMed ID: 22170479
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Updated Review on Betacoronavirus Viral Entry Inhibitors: Learning from Past Discoveries to Advance COVID-19 Drug Discovery.
    Sabbah DA; Hajjo R; Bardaweel SK; Zhong HA
    Curr Top Med Chem; 2021; 21(7):571-596. PubMed ID: 33463470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pan-antiviral effects of a PIKfyve inhibitor on respiratory virus infection in human nasal epithelium and mice.
    Baker J; Ombredane H; Daly L; Knowles I; Rapeport G; Ito K
    Antimicrob Agents Chemother; 2024 Jan; 68(1):e0105023. PubMed ID: 38063402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting Proteases for Treating COVID-19.
    Luan B; Huynh T; Cheng X; Lan G; Wang HR
    J Proteome Res; 2020 Nov; 19(11):4316-4326. PubMed ID: 33090793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alpha-1 antitrypsin inhibits TMPRSS2 protease activity and SARS-CoV-2 infection.
    Wettstein L; Weil T; Conzelmann C; Müller JA; Groß R; Hirschenberger M; Seidel A; Klute S; Zech F; Prelli Bozzo C; Preising N; Fois G; Lochbaum R; Knaff PM; Mailänder V; Ständker L; Thal DR; Schumann C; Stenger S; Kleger A; Lochnit G; Mayer B; Ruiz-Blanco YB; Hoffmann M; Sparrer KMJ; Pöhlmann S; Sanchez-Garcia E; Kirchhoff F; Frick M; Münch J
    Nat Commun; 2021 Mar; 12(1):1726. PubMed ID: 33741941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Novel Glucocorticoid and Androgen Receptor Modulator Reduces Viral Entry and Innate Immune Inflammatory Responses in the Syrian Hamster Model of SARS-CoV-2 Infection.
    Rocha SM; Fagre AC; Latham AS; Cummings JE; Aboellail TA; Reigan P; Aldaz DA; McDermott CP; Popichak KA; Kading RC; Schountz T; Theise ND; Slayden RA; Tjalkens RB
    Front Immunol; 2022; 13():811430. PubMed ID: 35250984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and Utilization of a Chemical Probe to Interrogate the Roles of PIKfyve in the Lifecycle of β-Coronaviruses.
    Drewry DH; Potjewyd FM; Bayati A; Smith JL; Dickmander RJ; Howell S; Taft-Benz S; Min SM; Hossain MA; Heise M; McPherson PS; Moorman NJ; Axtman AD
    J Med Chem; 2022 Oct; 65(19):12860-12882. PubMed ID: 36111834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advances in the Development of SARS-CoV-2 Mpro Inhibitors.
    Agost-Beltrán L; de la Hoz-Rodríguez S; Bou-Iserte L; Rodríguez S; Fernández-de-la-Pradilla A; González FV
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. B-cell non-Hodgkin lymphoma: Selective vulnerability to PIKFYVE inhibition.
    Gayle S; Landrette S; Beeharry N; Conrad C; Hernandez M; Beckett P; Ferguson SM; Xu T; Rothberg J; Lichenstein H
    Autophagy; 2017 Jun; 13(6):1082-1083. PubMed ID: 28350209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19.
    Li K; Meyerholz DK; Bartlett JA; McCray PB
    mBio; 2021 Aug; 12(4):e0097021. PubMed ID: 34340553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-based inhibitor design and repurposing clinical drugs to target SARS-CoV-2 proteases.
    Narayanan A; Toner SA; Jose J
    Biochem Soc Trans; 2022 Feb; 50(1):151-165. PubMed ID: 35015073
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioactive Terpenes and Their Derivatives as Potential SARS-CoV-2 Proteases Inhibitors from Molecular Modeling Studies.
    Diniz LRL; Perez-Castillo Y; Elshabrawy HA; Filho CDSMB; de Sousa DP
    Biomolecules; 2021 Jan; 11(1):. PubMed ID: 33430299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Capivasertib restricts SARS-CoV-2 cellular entry: a potential clinical application for COVID-19.
    Sun F; Mu C; Kwok HF; Xu J; Wu Y; Liu W; Sabatier JM; Annweiler C; Li X; Cao Z; Xie Y
    Int J Biol Sci; 2021; 17(9):2348-2355. PubMed ID: 34239361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities.
    Cannalire R; Cerchia C; Beccari AR; Di Leva FS; Summa V
    J Med Chem; 2022 Feb; 65(4):2716-2746. PubMed ID: 33186044
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TMPRSS2 and RNA-Dependent RNA Polymerase Are Effective Targets of Therapeutic Intervention for Treatment of COVID-19 Caused by SARS-CoV-2 Variants (B.1.1.7 and B.1.351).
    Lee J; Lee J; Kim HJ; Ko M; Jee Y; Kim S
    Microbiol Spectr; 2021 Sep; 9(1):e0047221. PubMed ID: 34378968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.