These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33375474)

  • 1. UAV-Based RGB Imagery for Hokkaido Pumpkin
    Wittstruck L; Kühling I; Trautz D; Kohlbrecher M; Jarmer T
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest.
    Johansen K; Morton MJL; Malbeteau Y; Aragon B; Al-Mashharawi S; Ziliani MG; Angel Y; Fiene G; Negrão S; Mousa MAA; Tester MA; McCabe MF
    Front Artif Intell; 2020; 3():28. PubMed ID: 33733147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yield response of pumpkin and winter squash to simulated cucumber beetle (Coleoptera: Chrysomelidae) feeding injury.
    Hoffmann MP; Ayyappath R; Kirkwyland JJ
    J Econ Entomol; 2000 Feb; 93(1):136-40. PubMed ID: 14658523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.
    Huang H; Deng J; Lan Y; Yang A; Deng X; Zhang L
    PLoS One; 2018; 13(4):e0196302. PubMed ID: 29698500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing UAV-Based Technologies and RGB-D Reconstruction Methods for Plant Height and Biomass Monitoring on Grass Ley.
    Rueda-Ayala VP; Peña JM; Höglind M; Bengochea-Guevara JM; Andújar D
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30696014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops.
    Hu P; Chapman SC; Zheng B
    Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating plant distance in maize using Unmanned Aerial Vehicle (UAV).
    Zhang J; Basso B; Price RF; Putman G; Shuai G
    PLoS One; 2018; 13(4):e0195223. PubMed ID: 29677204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ramie Yield Estimation Based on UAV RGB Images.
    Fu H; Wang C; Cui G; She W; Zhao L
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system.
    Michez A; Piégay H; Lisein J; Claessens H; Lejeune P
    Environ Monit Assess; 2016 Mar; 188(3):146. PubMed ID: 26850712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel semi-supervised framework for UAV based crop/weed classification.
    Khan S; Tufail M; Khan MT; Khan ZA; Iqbal J; Alam M
    PLoS One; 2021; 16(5):e0251008. PubMed ID: 33970938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating 2-D and 3-D Proximal Remote Sensing Techniques for Vineyard Yield Estimation.
    Hacking C; Poona N; Manzan N; Poblete-Echeverría C
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31443479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explainable identification and mapping of trees using UAV RGB image and deep learning.
    Onishi M; Ise T
    Sci Rep; 2021 Jan; 11(1):903. PubMed ID: 33441689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Fruit-Associated QTLs in Winter Squash (
    Kaźmińska K; Hallmann E; Korzeniewska A; Niemirowicz-Szczytt K; Bartoszewski G
    Genes (Basel); 2020 Apr; 11(4):. PubMed ID: 32295204
    [No Abstract]   [Full Text] [Related]  

  • 14. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.
    van Andel AC; Wich SA; Boesch C; Koh LP; Robbins MM; Kelly J; Kuehl HS
    Am J Primatol; 2015 Oct; 77(10):1122-34. PubMed ID: 26179423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sentinel-2 Data for Precision Agriculture?-A UAV-Based Assessment.
    Bukowiecki J; Rose T; Kage H
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials.
    Zhang J; Virk S; Porter W; Kenworthy K; Sullivan D; Schwartz B
    Front Plant Sci; 2019; 10():279. PubMed ID: 30930917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Vegetation Segmentation Approach for Cropped Fields Based on Threshold Detection from Hue Histograms.
    Hassanein M; Lari Z; El-Sheimy N
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29670055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cotton Yield Estimation Based on Vegetation Indices and Texture Features Derived From RGB Image.
    Ma Y; Ma L; Zhang Q; Huang C; Yi X; Chen X; Hou T; Lv X; Zhang Z
    Front Plant Sci; 2022; 13():925986. PubMed ID: 35783985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapeseed Seedling Stand Counting and Seeding Performance Evaluation at Two Early Growth Stages Based on Unmanned Aerial Vehicle Imagery.
    Zhao B; Zhang J; Yang C; Zhou G; Ding Y; Shi Y; Zhang D; Xie J; Liao Q
    Front Plant Sci; 2018; 9():1362. PubMed ID: 30298081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UAVs, Hyperspectral Remote Sensing, and Machine Learning Revolutionizing Reef Monitoring.
    Parsons M; Bratanov D; Gaston KJ; Gonzalez F
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29941801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.