These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 33375727)

  • 1. Study of Microchannels Fabricated Using Desktop Fused Deposition Modeling Systems.
    Rehmani MAA; Jaywant SA; Arif KM
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Different Microchannels by Adjusting the Extrusion Parameters for Sacrificial Molds.
    Tang W; Liu H; Zhu L; Shi J; Li Z; Xiang N; Yang J
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31426534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of Capillary-Driven Flow in 3D Printed Open Microchannels.
    Lade RK; Hippchen EJ; Macosko CW; Francis LF
    Langmuir; 2017 Mar; 33(12):2949-2964. PubMed ID: 28274121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Low-Cost 3-in-1 3D Printer as a Tool for the Fabrication of Flow-Through Channels of Microfluidic Systems.
    Thaweskulchai T; Schulte A
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing.
    Ruiz C; Kadimisetty K; Yin K; Mauk MG; Zhao H; Liu C
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32492980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices.
    Quero RF; Domingos da Silveira G; Fracassi da Silva JA; Jesus DP
    Lab Chip; 2021 Sep; 21(19):3715-3729. PubMed ID: 34355724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.
    Macdonald NP; Cabot JM; Smejkal P; Guijt RM; Paull B; Breadmore MC
    Anal Chem; 2017 Apr; 89(7):3858-3866. PubMed ID: 28281349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fused Filament Fabrication (FFF) for Manufacturing of Microfluidic Micromixers: An Experimental Study on the Effect of Process Variables in Printed Microfluidic Micromixers.
    Zeraatkar M; de Tullio MD; Percoco G
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strength of PLA Components Fabricated with Fused Deposition Technology Using a Desktop 3D Printer as a Function of Geometrical Parameters of the Process.
    Kuznetsov VE; Solonin AN; Urzhumtsev OD; Schilling R; Tavitov AG
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimension compensation of printed master molds by a desktop LCD 3D printer for high-precision microfluidic applications.
    Zhang X; Liu Y; Bao Y; Zheng Z; Mi J; Tang Y; Zhang Q; Oseyemi AE
    Mikrochim Acta; 2024 Sep; 191(10):583. PubMed ID: 39245704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of 3D-printed molds for fabrication of non-planar microchannels.
    Parthiban P; Vijayan S; Doyle PS; Hashimoto M
    Biomicrofluidics; 2021 Mar; 15(2):024111. PubMed ID: 33912266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manufacturing of 3D-Printed Microfluidic Devices for the Synthesis of Drug-Loaded Liposomal Formulations.
    Ballacchino G; Weaver E; Mathew E; Dorati R; Genta I; Conti B; Lamprou DA
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual Sacrificial Molding: Fabricating 3D Microchannels with Overhang and Helical Features.
    Goh WH; Hashimoto M
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printing of Inertial Microfluidic Devices.
    Razavi Bazaz S; Rouhi O; Raoufi MA; Ejeian F; Asadnia M; Jin D; Ebrahimi Warkiani M
    Sci Rep; 2020 Apr; 10(1):5929. PubMed ID: 32246111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach.
    Tiboni M; Tiboni M; Pierro A; Del Papa M; Sparaventi S; Cespi M; Casettari L
    Int J Pharm; 2021 Apr; 599():120464. PubMed ID: 33713759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroosmotic flow in fused deposition modeling (FDM) 3D-printed microchannels.
    Barbosa FHB; Quero RF; Rocha KN; Costa SC; de Jesus DP
    Electrophoresis; 2023 Mar; 44(5-6):558-562. PubMed ID: 36495094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography.
    Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB
    Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.