BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 33375727)

  • 21. Investigation of a Short Carbon Fibre-Reinforced Polyamide and Comparison of Two Manufacturing Processes: Fused Deposition Modelling (FDM) and Polymer Injection Moulding (PIM).
    Verdejo de Toro E; Coello Sobrino J; Martínez Martínez A; Miguel Eguía V; Ayllón Pérez J
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32028619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate.
    Kotz F; Mader M; Dellen N; Risch P; Kick A; Helmer D; Rapp BE
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32961823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs.
    Kollamaram G; Croker DM; Walker GM; Goyanes A; Basit AW; Gaisford S
    Int J Pharm; 2018 Jul; 545(1-2):144-152. PubMed ID: 29705104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D-printing pen versus desktop 3D-printers: Fabrication of carbon black/polylactic acid electrodes for single-drop detection of 2,4,6-trinitrotoluene.
    Cardoso RM; Rocha DP; Rocha RG; Stefano JS; Silva RAB; Richter EM; Muñoz RAA
    Anal Chim Acta; 2020 Oct; 1132():10-19. PubMed ID: 32980099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using Stereolithographic Printing to Manufacture Monolithic Microfluidic Devices with an Extremely High Aspect Ratio.
    Chen PC; Chen PT; Vo TNA
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of a Lab-on-Chip Device Using Material Extrusion (3D Printing) and Demonstration via Malaria-Ab ELISA.
    Bauer M; Kulinsky L
    Micromachines (Basel); 2018 Jan; 9(1):. PubMed ID: 30393303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.
    Alapan Y; Hasan MN; Shen R; Gurkan UA
    J Nanotechnol Eng Med; 2015 May; 6(2):. PubMed ID: 27512530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications.
    Salentijn GI; Oomen PE; Grajewski M; Verpoorte E
    Anal Chem; 2017 Jul; 89(13):7053-7061. PubMed ID: 28628294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic devices manufacturing with a stereolithographic printer for biological applications.
    Carnero B; Bao-Varela C; Gómez-Varela AI; Álvarez E; Flores-Arias MT
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112388. PubMed ID: 34579907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.
    Goyanes A; Det-Amornrat U; Wang J; Basit AW; Gaisford S
    J Control Release; 2016 Jul; 234():41-8. PubMed ID: 27189134
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fused Deposition Modeling 3D Printing in Oral and Maxillofacial Surgery: Problems and Solutions.
    Kamio T; Onda T
    Cureus; 2022 Sep; 14(9):e28906. PubMed ID: 36105906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printed microfluidic mixer for real-time monitoring of organic reactions by direct infusion mass spectrometry.
    Duarte LC; Pereira I; Maciel LIL; Vaz BG; Coltro WKT
    Anal Chim Acta; 2022 Jan; 1190():339252. PubMed ID: 34857139
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Handheld and 'Turnkey' 3D printed paper-microfluidic viscometer with on-board microcontroller for smartphone based biosensing applications.
    Puneeth SB; Goel S
    Anal Chim Acta; 2021 Apr; 1153():338303. PubMed ID: 33714437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D Printed Paper-Based Microfluidic Analytical Devices.
    He Y; Gao Q; Wu WB; Nie J; Fu JZ
    Micromachines (Basel); 2016 Jun; 7(7):. PubMed ID: 30404282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering 3D Printed Microfluidic Chips for the Fabrication of Nanomedicines.
    Kara A; Vassiliadou A; Ongoren B; Keeble W; Hing R; Lalatsa A; Serrano DR
    Pharmaceutics; 2021 Dec; 13(12):. PubMed ID: 34959415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D-PAD: Paper-Based Analytical Devices with Integrated Three-Dimensional Features.
    Ng JS; Hashimoto M
    Biosensors (Basel); 2021 Mar; 11(3):. PubMed ID: 33802637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterisation of fused deposition modeling 3D printers for pharmaceutical and medical applications.
    Feuerbach T; Kock S; Thommes M
    Pharm Dev Technol; 2018 Dec; 23(10):1136-1145. PubMed ID: 29938558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Precision Stereolithography of Biomicrofluidic Devices.
    Kuo AP; Bhattacharjee N; Lee YS; Castro K; Kim YT; Folch A
    Adv Mater Technol; 2019 Jun; 4(6):. PubMed ID: 32490168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Embedding objects during 3D printing to add new functionalities.
    Yuen PK
    Biomicrofluidics; 2016 Jul; 10(4):044104. PubMed ID: 27478528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.