These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 33375780)
1. First Steps to Rationalize Host-Guest Interaction between α-, β-, and γ-Cyclodextrin and Divalent First-Row Transition and Post-transition Metals (Subgroups VIIB, VIIIB, and IIB). Dossmann H; Fontaine L; Weisgerber T; Bonnet V; Monflier E; Ponchel A; Przybylski C Inorg Chem; 2021 Jan; 60(2):930-943. PubMed ID: 33375780 [TBL] [Abstract][Full Text] [Related]
2. The non-covalent complexes of α- or γ-cyclodextrin with divalent metal cations determined by mass spectrometry. Chen X; Chu Y; Gu L; Zhou M; Ding CF Carbohydr Res; 2020 Jun; 492():107987. PubMed ID: 32251851 [TBL] [Abstract][Full Text] [Related]
4. Studies on the non-covalent complexes between oleanolic acid and cyclodextrins using electrospray ionization tandem mass spectrometry. Guo M; Zhang S; Song F; Wang D; Liu Z; Liu S J Mass Spectrom; 2003 Jul; 38(7):723-31. PubMed ID: 12898652 [TBL] [Abstract][Full Text] [Related]
5. Effect of Transition-Metal Ions on the Conformation of Encephalin Investigated by Hydrogen/Deuterium Exchange and Theoretical Calculations. Wu F; Huang Y; Yu F; Li Z; Ding CF J Phys Chem B; 2020 Jan; 124(1):101-109. PubMed ID: 31829598 [TBL] [Abstract][Full Text] [Related]
6. A mass spectrometric stochastic dynamic diffusion approach to selective quantitative and 3D structural analyses of native cyclodextrins by electrospray ionization and atmospheric pressure chemical ionization methods. Ivanova B; Spiteller M Bioorg Chem; 2019 Dec; 93():103308. PubMed ID: 31581053 [TBL] [Abstract][Full Text] [Related]
7. Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science. Prochowicz D; Kornowicz A; Lewiński J Chem Rev; 2017 Nov; 117(22):13461-13501. PubMed ID: 29048880 [TBL] [Abstract][Full Text] [Related]
9. Square-antiprismatic eight-coordinate complexes of divalent first-row transition metal cations: a density functional theory exploration of the electronic-structural landscape. Conradie J; Patra AK; Harrop TC; Ghosh A Inorg Chem; 2015 Feb; 54(4):1375-83. PubMed ID: 25574575 [TBL] [Abstract][Full Text] [Related]
10. Interaction between transition metals and phenylalanine: a combined experimental and computational study. Elius Hossain M; Mahmudul Hasan M; Halim ME; Ehsan MQ; Halim MA Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():499-508. PubMed ID: 25528509 [TBL] [Abstract][Full Text] [Related]
11. Supramolecular control of transition metal complexes in water by a hydrophobic cavity: a bio-inspired strategy. Bistri O; Reinaud O Org Biomol Chem; 2015 Mar; 13(10):2849-65. PubMed ID: 25608497 [TBL] [Abstract][Full Text] [Related]
12. Rapidly formed quinalphos complexes with transition metal ions characterized by electrospray ionization mass spectrometry. Keller BO; Esbata AA; Buncel E; van Loon GW Rapid Commun Mass Spectrom; 2013 Jun; 27(12):1319-28. PubMed ID: 23681809 [TBL] [Abstract][Full Text] [Related]
13. Identification of face-to-face inclusion complex formation of cyclodextrin bearing an azobenzene group by electrospray ionization mass spectrometry. Arakawa R; Yamaguchi T; Takahashi A; Fujimoto T; Kaneda T J Am Soc Mass Spectrom; 2003 Oct; 14(10):1116-22. PubMed ID: 14530092 [TBL] [Abstract][Full Text] [Related]
14. Structural and electronic characterization of the complexes obtained by the interaction between bare and hydrated first-row transition-metal ions (Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+)) and glycine. Marino T; Toscano M; Russo N; Grand A J Phys Chem B; 2006 Dec; 110(48):24666-73. PubMed ID: 17134229 [TBL] [Abstract][Full Text] [Related]
15. Characterization of non-covalent complexes of rutin with cyclodextrins by electrospray ionization tandem mass spectrometry. Guo M; Song F; Liu Z; Liu S J Mass Spectrom; 2004 Jun; 39(6):594-9. PubMed ID: 15236296 [TBL] [Abstract][Full Text] [Related]
16. Quantifying non-covalent binding affinity using mass spectrometry: a systematic study on complexes of cyclodextrins with alkali metal cations. Wei W; Chu Y; Wang R; He X; Ding C Rapid Commun Mass Spectrom; 2015 May; 29(10):927-36. PubMed ID: 26407307 [TBL] [Abstract][Full Text] [Related]
17. Binuclear cyclopentadienylmetal cyclooctatetraene derivatives of the first row transition metals: effects of ring conformation on the bonding of an eight-membered carbocyclic ring to a pair of metal atoms. Zhai X; Li G; Li QS; Xie Y; King RB; Schaefer HF J Phys Chem A; 2011 Apr; 115(14):3133-43. PubMed ID: 21438631 [TBL] [Abstract][Full Text] [Related]
18. Transition metals as electron traps. II. Structures, energetics and electron transfer dissociations of ternary Co, Ni and Zn-peptide complexes in the gas phase. Turecek F; Holm AI; Panja S; Nielsen SB; Hvelplund P J Mass Spectrom; 2009 Oct; 44(10):1518-31. PubMed ID: 19753554 [TBL] [Abstract][Full Text] [Related]
19. Molecular recognition in cyclodextrin complexes of amino acid derivatives. 2. A new perturbation: the room-temperature crystallographic structure determination for the N-acetyl-p-methoxy-L-phenylalanine methyl ester/beta-cyclodextrin complex. Clark JL; Booth BR; Stezowski JJ J Am Chem Soc; 2001 Oct; 123(40):9889-95. PubMed ID: 11583553 [TBL] [Abstract][Full Text] [Related]
20. Studies on transition metal-quercetin complexes using electrospray ionization tandem mass spectrometry. Liu Y; Guo M Molecules; 2015 May; 20(5):8583-94. PubMed ID: 25985359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]