These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33375840)

  • 1. Assessing Real-Life Benefit From Hearing-Aid Noise Management: SSQ12 Questionnaire Versus Ecological Momentary Assessment With Acoustic Data-Logging.
    Andersson KE; Andersen LS; Christensen JH; Neher T
    Am J Audiol; 2021 Mar; 30(1):93-104. PubMed ID: 33375840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy and Effectiveness of Advanced Hearing Aid Directional and Noise Reduction Technologies for Older Adults With Mild to Moderate Hearing Loss.
    Wu YH; Stangl E; Chipara O; Hasan SS; DeVries S; Oleson J
    Ear Hear; 2019; 40(4):805-822. PubMed ID: 30379683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecological Momentary Assessment: A Field Evaluation of Subjective Ratings of Speech in Noise.
    Jenstad LM; Singh G; Boretzki M; DeLongis A; Fichtl E; Ho R; Huen M; Meyer V; Pang F; Stephenson E
    Ear Hear; 2021 Nov-Dec 01; 42(6):1770-1781. PubMed ID: 34010249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construct Validity of the Ecological Momentary Assessment in Audiology Research.
    Wu YH; Stangl E; Zhang X; Bentler RA
    J Am Acad Audiol; 2015; 26(10):872-84. PubMed ID: 26554491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why Ecological Momentary Assessment Surveys Go Incomplete: When It Happens and How It Impacts Data.
    Wu YH; Xu J; Stangl E; Pentony S; Vyas D; Chipara O; Gudjonsdottir A; Oleson J; Galster J
    J Am Acad Audiol; 2021 Jan; 32(1):16-26. PubMed ID: 33321541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of ecological momentary assessment to evaluate real-world aided outcomes with children.
    Glista D; O'Hagan R; Van Eeckhoutte M; Lai Y; Scollie S
    Int J Audiol; 2021 Apr; 60(sup1):S68-S78. PubMed ID: 33761827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Individual Hearing-Aid Preference From Self-Reported Listening Experiences in Daily Life.
    Christensen JH; Rumley J; Gil-Carvajal JC; Whiston H; Lough M; Saunders GH
    Ear Hear; 2024 May; ():. PubMed ID: 38783420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full time directional versus user selectable microphone modes in hearing aids.
    Ricketts T; Henry P; Gnewikow D
    Ear Hear; 2003 Oct; 24(5):424-39. PubMed ID: 14534412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Adaptive Noise Management Technologies for School-Age Children with Hearing Loss.
    Wolfe J; Duke M; Schafer E; Jones C; Rakita L
    J Am Acad Audiol; 2017 May; 28(5):415-435. PubMed ID: 28534732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cochlear implant combined with a linear frequency transposing hearing aid.
    Hua H; Johansson B; Jönsson R; Magnusson L
    J Am Acad Audiol; 2012 Oct; 23(9):722-32. PubMed ID: 23072964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of hearing aid technologies on listening in an automobile.
    Wu YH; Stangl E; Bentler RA; Stanziola RW
    J Am Acad Audiol; 2013 Jun; 24(6):474-85. PubMed ID: 23886425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Real-World Performance of Percutaneously Coupled Bone-Conduction Device Users With Severe-to-Profound Unilateral Hearing Loss.
    Elkins E; Harvey A; Hillyer J; Hazlewood C; Watson S; Parbery-Clark A
    Am J Audiol; 2020 Jun; 29(2):170-187. PubMed ID: 32286081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech Perception in Noise and Listening Effort of Older Adults With Nonlinear Frequency Compression Hearing Aids.
    Shehorn J; Marrone N; Muller T
    Ear Hear; 2018; 39(2):215-225. PubMed ID: 28806193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speech recognition for bilaterally asymmetric and symmetric hearing aid microphone modes in simulated classroom environments.
    Ricketts TA; Picou EM
    Ear Hear; 2013 Sep; 34(5):601-9. PubMed ID: 23524508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in Word and Phoneme Recognition in Quiet, Sentence Recognition in Noise, and Subjective Outcomes between Manufacturer First-Fit and Hearing Aids Programmed to NAL-NL2 Using Real-Ear Measures.
    Valente M; Oeding K; Brockmeyer A; Smith S; Kallogjeri D
    J Am Acad Audiol; 2018 Sep; 29(8):706-721. PubMed ID: 30222541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical hearing experiences manifest differently across individuals: insights from hearing aid data captured in real-life moments.
    Lelic D; Nielsen J; Parker D; Marchman Rønne F
    Int J Audiol; 2022 May; 61(5):428-436. PubMed ID: 34187287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Hearing Aid Technology on Outcomes in Daily Life II: Speech Understanding and Listening Effort.
    Johnson JA; Xu J; Cox RM
    Ear Hear; 2016; 37(5):529-40. PubMed ID: 27556363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of audiovisual ceiling performance on the relationship between reverberation and directional benefit: perception and prediction.
    Wu YH; Bentler RA
    Ear Hear; 2012; 33(5):604-14. PubMed ID: 22677815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do Hearing Aids Address Real-World Hearing Difficulties for Adults With Mild Hearing Impairment? Results From a Pilot Study Using Ecological Momentary Assessment.
    Timmer BHB; Hickson L; Launer S
    Trends Hear; 2018; 22():2331216518783608. PubMed ID: 29956590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between the acceptance of noise and acoustic environments in young adults with normal hearing: a pilot study.
    Franklin CA; White LJ; Franklin TC; Smith-Olinde L
    J Am Acad Audiol; 2014 Jun; 25(6):584-91. PubMed ID: 25313548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.