These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33375946)

  • 1. An automated protocol for modelling peptide substrates to proteases.
    Ochoa R; Magnitov M; Laskowski RA; Cossio P; Thornton JM
    BMC Bioinformatics; 2020 Dec; 21(1):586. PubMed ID: 33375946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinants of Macromolecular Specificity from Proteomics-Derived Peptide Substrate Data.
    Fuchs JE; Schilling O; Liedl KR
    Curr Protein Pept Sci; 2017; 18(9):905-913. PubMed ID: 27455965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening for protease substrate by polyvalent phage display.
    Sedlacek R; Chen E
    Comb Chem High Throughput Screen; 2005 Mar; 8(2):197-203. PubMed ID: 15777183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protease Inhibitors in View of Peptide Substrate Databases.
    Waldner BJ; Fuchs JE; Schauperl M; Kramer C; Liedl KR
    J Chem Inf Model; 2016 Jun; 56(6):1228-35. PubMed ID: 27247997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deconvolving multiplexed protease signatures with substrate reduction and activity clustering.
    Zhuang Q; Holt BA; Kwong GA; Qiu P
    PLoS Comput Biol; 2019 Sep; 15(9):e1006909. PubMed ID: 31479443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixture-based peptide libraries for identifying protease cleavage motifs.
    Turk BE
    Methods Mol Biol; 2009; 539():79-91. PubMed ID: 19377969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural, kinetic, and thermodynamic studies of specificity designed HIV-1 protease.
    Alvizo O; Mittal S; Mayo SL; Schiffer CA
    Protein Sci; 2012 Jul; 21(7):1029-41. PubMed ID: 22549928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Procleave: Predicting Protease-specific Substrate Cleavage Sites by Combining Sequence and Structural Information.
    Li F; Leier A; Liu Q; Wang Y; Xiang D; Akutsu T; Webb GI; Smith AI; Marquez-Lago T; Li J; Song J
    Genomics Proteomics Bioinformatics; 2020 Feb; 18(1):52-64. PubMed ID: 32413515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.
    Song J; Tan H; Perry AJ; Akutsu T; Webb GI; Whisstock JC; Pike RN
    PLoS One; 2012; 7(11):e50300. PubMed ID: 23209700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Determinants of Substrate Specificity of SplF Protease from
    Stach N; Karim A; Golik P; Kitel R; Pustelny K; Gruba N; Groborz K; Jankowska U; Kedracka-Krok S; Wladyka B; Drag M; Lesner A; Dubin G
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33672341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing Protease Specificity: How Many Substrates Do We Need?
    Schauperl M; Fuchs JE; Waldner BJ; Huber RG; Kramer C; Liedl KR
    PLoS One; 2015; 10(11):e0142658. PubMed ID: 26559682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sequence and structure based method to predict putative substrates, functions and regulatory networks of endo proteases.
    Venkatraman P; Balakrishnan S; Rao S; Hooda Y; Pol S
    PLoS One; 2009 May; 4(5):e5700. PubMed ID: 19492082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-Scale Structure-Based Prediction and Identification of Novel Protease Substrates Using Computational Protein Design.
    Pethe MA; Rubenstein AB; Khare SD
    J Mol Biol; 2017 Jan; 429(2):220-236. PubMed ID: 27932294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteasix: a tool for automated and large-scale prediction of proteases involved in naturally occurring peptide generation.
    Klein J; Eales J; Zürbig P; Vlahou A; Mischak H; Stevens R
    Proteomics; 2013 Apr; 13(7):1077-82. PubMed ID: 23348921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatic approaches for predicting substrates of proteases.
    Song J; Tan H; Boyd SE; Shen H; Mahmood K; Webb GI; Akutsu T; Whisstock JC; Pike RN
    J Bioinform Comput Biol; 2011 Feb; 9(1):149-78. PubMed ID: 21328711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cleavage entropy as quantitative measure of protease specificity.
    Fuchs JE; von Grafenstein S; Huber RG; Margreiter MA; Spitzer GM; Wallnoefer HG; Liedl KR
    PLoS Comput Biol; 2013 Apr; 9(4):e1003007. PubMed ID: 23637583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary optimization of peptide substrates for proteases that exhibit rapid hydrolysis kinetics.
    Boulware KT; Jabaiah A; Daugherty PS
    Biotechnol Bioeng; 2010 Jun; 106(3):339-46. PubMed ID: 20148412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of bacterial proteases with a panel of fluorescent peptide substrates.
    Wildeboer D; Jeganathan F; Price RG; Abuknesha RA
    Anal Biochem; 2009 Jan; 384(2):321-8. PubMed ID: 18957278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of substrate specificity in NS3/4A serine protease by biased sequence search threading.
    Ozdemir Isik G; Ozer AN
    J Biomol Struct Dyn; 2017 Apr; 35(5):1102-1114. PubMed ID: 27122119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positional scanning synthetic combinatorial libraries for substrate profiling.
    Schneider EL; Craik CS
    Methods Mol Biol; 2009; 539():59-78. PubMed ID: 19377970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.