These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 33376157)

  • 1. Surprise: Unexpected Action Execution and Unexpected Inhibition Recruit the Same Fronto-Basal-Ganglia Network.
    Sebastian A; Konken AM; Schaum M; Lieb K; Tüscher O; Jung P
    J Neurosci; 2021 Mar; 41(11):2447-2456. PubMed ID: 33376157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perceptual Surprise Improves Action Stopping by Nonselectively Suppressing Motor Activity via a Neural Mechanism for Motor Inhibition.
    Dutra IC; Waller DA; Wessel JR
    J Neurosci; 2018 Feb; 38(6):1482-1492. PubMed ID: 29305533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A supramodal role of the basal ganglia in memory and motor inhibition: Meta-analytic evidence.
    Guo Y; Schmitz TW; Mur M; Ferreira CS; Anderson MC
    Neuropsychologia; 2018 Jan; 108():117-134. PubMed ID: 29199109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition.
    Jahfari S; Waldorp L; van den Wildenberg WP; Scholte HS; Ridderinkhof KR; Forstmann BU
    J Neurosci; 2011 May; 31(18):6891-9. PubMed ID: 21543619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for non-selective response inhibition in uncertain contexts revealed by combined meta-analysis and Bayesian analysis of fMRI data.
    Masharipov R; Korotkov A; Medvedev S; Kireev M
    Sci Rep; 2022 Jun; 12(1):10137. PubMed ID: 35710930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategy switches in proactive inhibitory control and their association with task-general and stopping-specific networks.
    Messel MS; Raud L; Hoff PK; Skaftnes CS; Huster RJ
    Neuropsychologia; 2019 Dec; 135():107220. PubMed ID: 31586553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging and inhibitory control of action: cortico-subthalamic connection strength predicts stopping performance.
    Coxon JP; Van Impe A; Wenderoth N; Swinnen SP
    J Neurosci; 2012 Jun; 32(24):8401-12. PubMed ID: 22699920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Globality of Motor Suppression: Unexpected Events and Their Influence on Behavior and Cognition.
    Wessel JR; Aron AR
    Neuron; 2017 Jan; 93(2):259-280. PubMed ID: 28103476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.
    Sebastian A; Rössler K; Wibral M; Mobascher A; Lieb K; Jung P; Tüscher O
    J Neurosci; 2017 Oct; 37(40):9785-9794. PubMed ID: 28887387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surprise disrupts cognition via a fronto-basal ganglia suppressive mechanism.
    Wessel JR; Jenkinson N; Brittain JS; Voets SH; Aziz TZ; Aron AR
    Nat Commun; 2016 Apr; 7():11195. PubMed ID: 27088156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-Task Contributions of Frontobasal Ganglia Circuitry in Response Inhibition and Conflict-Induced Slowing.
    Jahfari S; Ridderinkhof KR; Collins AGE; Knapen T; Waldorp LJ; Frank MJ
    Cereb Cortex; 2019 May; 29(5):1969-1983. PubMed ID: 29912363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A large scale (N=102) functional neuroimaging study of response inhibition in a Go/NoGo task.
    Steele VR; Aharoni E; Munro GE; Calhoun VD; Nyalakanti P; Stevens MC; Pearlson G; Kiehl KA
    Behav Brain Res; 2013 Nov; 256():529-36. PubMed ID: 23756137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Costs of control: decreased motor cortex engagement during a Go/NoGo task in Tourette's syndrome.
    Thomalla G; Jonas M; Bäumer T; Siebner HR; Biermann-Ruben K; Ganos C; Orth M; Hummel FC; Gerloff C; Müller-Vahl K; Schnitzler A; Münchau A
    Brain; 2014 Jan; 137(Pt 1):122-36. PubMed ID: 24176975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus.
    Aron AR; Poldrack RA
    J Neurosci; 2006 Mar; 26(9):2424-33. PubMed ID: 16510720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A large scale (N=102) functional neuroimaging study of error processing in a Go/NoGo task.
    Steele VR; Claus ED; Aharoni E; Harenski C; Calhoun VD; Pearlson G; Kiehl KA
    Behav Brain Res; 2014 Jul; 268():127-38. PubMed ID: 24726752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcranial direct current stimulation facilitates response inhibition through dynamic modulation of the fronto-basal ganglia network.
    Sandrini M; Xu B; Volochayev R; Awosika O; Wang WT; Butman JA; Cohen LG
    Brain Stimul; 2020; 13(1):96-104. PubMed ID: 31422052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How preparation changes the need for top-down control of the basal ganglia when inhibiting premature actions.
    Jahfari S; Verbruggen F; Frank MJ; Waldorp LJ; Colzato L; Ridderinkhof KR; Forstmann BU
    J Neurosci; 2012 Aug; 32(32):10870-8. PubMed ID: 22875921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unexpected events induce motor slowing via a brain mechanism for action-stopping with global suppressive effects.
    Wessel JR; Aron AR
    J Neurosci; 2013 Nov; 33(47):18481-91. PubMed ID: 24259571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common and Unique Inhibitory Control Signatures of Action-Stopping and Attentional Capture Suggest That Actions Are Stopped in Two Stages.
    Tatz JR; Soh C; Wessel JR
    J Neurosci; 2021 Oct; 41(42):8826-8838. PubMed ID: 34493541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PreSMA stimulation changes task-free functional connectivity in the fronto-basal-ganglia that correlates with response inhibition efficiency.
    Xu B; Sandrini M; Wang WT; Smith JF; Sarlls JE; Awosika O; Butman JA; Horwitz B; Cohen LG
    Hum Brain Mapp; 2016 Sep; 37(9):3236-49. PubMed ID: 27144466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.