BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33376219)

  • 21. Improved bacterial RNA-seq by Cas9-based depletion of ribosomal RNA reads.
    Prezza G; Heckel T; Dietrich S; Homberger C; Westermann AJ; Vogel J
    RNA; 2020 Aug; 26(8):1069-1078. PubMed ID: 32345633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiplexed Engineering and Analysis of Combinatorial Enhancer Activity in Single Cells.
    Xie S; Duan J; Li B; Zhou P; Hon GC
    Mol Cell; 2017 Apr; 66(2):285-299.e5. PubMed ID: 28416141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome Analysis at the Single-Cell Level Using SMART Technology.
    Fish RN; Bostick M; Lehman A; Farmer A
    Curr Protoc Mol Biol; 2016 Oct; 116():4.26.1-4.26.24. PubMed ID: 27723086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant Nuclei Isolation for Single-Nucleus RNA Sequencing.
    Xin X; Du F; Jiao Y
    Methods Mol Biol; 2023; 2686():307-311. PubMed ID: 37540366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing.
    Datlinger P; Rendeiro AF; Boenke T; Senekowitsch M; Krausgruber T; Barreca D; Bock C
    Nat Methods; 2021 Jun; 18(6):635-642. PubMed ID: 34059827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Full-Length Single-Cell RNA-Sequencing with FLASH-seq.
    Hahaut V; Picelli S
    Methods Mol Biol; 2023; 2584():123-164. PubMed ID: 36495447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nuclear RNA Isolation and Sequencing.
    Dhaliwal NK; Mitchell JA
    Methods Mol Biol; 2016; 1402():63-71. PubMed ID: 26721484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nuclear RNA Isolation and Sequencing.
    Dhaliwal NK; Mitchell JA
    Methods Mol Biol; 2021; 2372():75-83. PubMed ID: 34417744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells.
    Mimitou EP; Cheng A; Montalbano A; Hao S; Stoeckius M; Legut M; Roush T; Herrera A; Papalexi E; Ouyang Z; Satija R; Sanjana NE; Koralov SB; Smibert P
    Nat Methods; 2019 May; 16(5):409-412. PubMed ID: 31011186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AtRTD - a comprehensive reference transcript dataset resource for accurate quantification of transcript-specific expression in Arabidopsis thaliana.
    Zhang R; Calixto CP; Tzioutziou NA; James AB; Simpson CG; Guo W; Marquez Y; Kalyna M; Patro R; Eyras E; Barta A; Nimmo HG; Brown JW
    New Phytol; 2015 Oct; 208(1):96-101. PubMed ID: 26111100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of Single-Cell RNA-Seq Libraries for Next Generation Sequencing.
    Trombetta JJ; Gennert D; Lu D; Satija R; Shalek AK; Regev A
    Curr Protoc Mol Biol; 2014 Jul; 107():4.22.1-4.22.17. PubMed ID: 24984854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiplexed single-cell RNA-seq via transient barcoding for simultaneous expression profiling of various drug perturbations.
    Shin D; Lee W; Lee JH; Bang D
    Sci Adv; 2019 May; 5(5):eaav2249. PubMed ID: 31106268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution.
    Wilhelm BT; Marguerat S; Watt S; Schubert F; Wood V; Goodhead I; Penkett CJ; Rogers J; Bähler J
    Nature; 2008 Jun; 453(7199):1239-43. PubMed ID: 18488015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression.
    Xia C; Fan J; Emanuel G; Hao J; Zhuang X
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19490-19499. PubMed ID: 31501331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequencing of first-strand cDNA library reveals full-length transcriptomes.
    Agarwal S; Macfarlan TS; Sartor MA; Iwase S
    Nat Commun; 2015 Jan; 6():6002. PubMed ID: 25607527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alternative polyadenylation analysis in animals and plants: newly developed strategies for profiling, processing and validation.
    Zhang Y; Carrion SA; Zhang Y; Zhang X; Zinski AL; Michal JJ; Jiang Z
    Int J Biol Sci; 2018; 14(12):1709-1714. PubMed ID: 30416385
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An ultra high-throughput, massively multiplexable, single-cell RNA-seq platform in yeasts.
    Brettner L; Eder R; Schmidlin K; Geiler-Samerotte K
    Yeast; 2024 Apr; 41(4):242-255. PubMed ID: 38282330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finding the active genes in deep RNA-seq gene expression studies.
    Hart T; Komori HK; LaMere S; Podshivalova K; Salomon DR
    BMC Genomics; 2013 Nov; 14():778. PubMed ID: 24215113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative transcriptome analysis of epithelial and fiber cells in newborn mouse lenses with RNA sequencing.
    Hoang TV; Kumar PK; Sutharzan S; Tsonis PA; Liang C; Robinson ML
    Mol Vis; 2014; 20():1491-517. PubMed ID: 25489224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Highly Scalable Method for Joint Whole-Genome Sequencing and Gene-Expression Profiling of Single Cells.
    Zachariadis V; Cheng H; Andrews N; Enge M
    Mol Cell; 2020 Nov; 80(3):541-553.e5. PubMed ID: 33068522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.