These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33376250)

  • 1. Distinguishing intrinsic photon correlations from external noise with frequency-resolved homodyne detection.
    Lüders C; Aßmann M
    Sci Rep; 2020 Dec; 10(1):22411. PubMed ID: 33376250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical Phases and Quantum Correlations in an Emitter-Waveguide System with Feedback.
    Buonaiuto G; Carollo F; Olmos B; Lesanovsky I
    Phys Rev Lett; 2021 Sep; 127(13):133601. PubMed ID: 34623844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of correlations between individual photon emission events of a microcavity laser.
    Wiersig J; Gies C; Jahnke F; Assmann M; Berstermann T; Bayer M; Kistner C; Reitzenstein S; Schneider C; Höfling S; Forchel A; Kruse C; Kalden J; Hommel D
    Nature; 2009 Jul; 460(7252):245-9. PubMed ID: 19587766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force measurement in squeezed dissipative optomechanics in the presence of laser phase noise.
    Gu WJ; Wang YY; Yi Z; Yang WX; Sun LH
    Opt Express; 2020 Apr; 28(8):12460-12474. PubMed ID: 32403743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise characteristics of heterodyne/homodyne frequency-domain measurements.
    Kang D; Kupinski MA
    J Biomed Opt; 2012 Jan; 17(1):015002. PubMed ID: 22352646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single molecule photon counting statistics for quantum mechanical chromophore dynamics.
    Bel G; Zheng Y; Brown FL
    J Phys Chem B; 2006 Sep; 110(38):19066-82. PubMed ID: 16986905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal noise and correlations in photon detection.
    Zmuidzinas J
    Appl Opt; 2003 Sep; 42(25):4989-5008. PubMed ID: 12962374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime.
    Jeantet A; Chassagneux Y; Raynaud C; Roussignol P; Lauret JS; Besga B; Estève J; Reichel J; Voisin C
    Phys Rev Lett; 2016 Jun; 116(24):247402. PubMed ID: 27367407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real time g
    Lüders C; Thewes J; Assmann M
    Opt Express; 2018 Sep; 26(19):24854-24863. PubMed ID: 30469596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modal analysis for noise characterization and propagation in a femtosecond oscillator.
    De S; Thiel V; Roslund J; Fabre C; Treps N
    Opt Lett; 2019 Aug; 44(16):3992-3995. PubMed ID: 31415530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonant driving of a single photon emitter embedded in a mechanical oscillator.
    Munsch M; Kuhlmann AV; Cadeddu D; Gérard JM; Claudon J; Poggio M; Warburton RJ
    Nat Commun; 2017 Jul; 8(1):76. PubMed ID: 28710414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Far-field superresolution of thermal sources by double homodyne or double array homodyne detection.
    Xie Y; Liu H; Sun H; Liu K; Gao J
    Opt Express; 2024 May; 32(11):19495-19507. PubMed ID: 38859083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast time-domain balanced homodyne detection of light.
    Haderka O; Michálek V; Urbásek V; Jezek M
    Appl Opt; 2009 May; 48(15):2884-9. PubMed ID: 19458739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the photon statistics and the noise figure of a fiber-optic parametric amplifier.
    Voss PL; Tang R; Kumar P
    Opt Lett; 2003 Apr; 28(7):549-51. PubMed ID: 12696611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atom-Based Sensing of Weak Radio Frequency Electric Fields Using Homodyne Readout.
    Kumar S; Fan H; Kübler H; Sheng J; Shaffer JP
    Sci Rep; 2017 Feb; 7():42981. PubMed ID: 28218308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing quantum synchronization through homodyne measurement, noise, and squeezing.
    Shen Y; Soh HY; Fan W; Kwek LC
    Phys Rev E; 2023 Aug; 108(2-1):024204. PubMed ID: 37723755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random-modulated pulse lidar using a gain-switched semiconductor laser with a delayed self-homodyne interferometer.
    Tsay HL; Chang CH; Lin FY
    Opt Express; 2023 Jan; 31(2):2013-2028. PubMed ID: 36785224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive model for studying noise induced by self-homodyne detection of backward Rayleigh scattering in optical fibers.
    Fleyer M; Cahill JP; Horowitz M; Menyuk CR; Okusaga O
    Opt Express; 2015 Oct; 23(20):25635-52. PubMed ID: 26480080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved confocal fluorescence imaging and spectrocopy system with single molecule sensitivity and sub-micrometer resolution.
    Wahl M; Koberling F; Patting M; Rahn H; Erdmann R
    Curr Pharm Biotechnol; 2004 Jun; 5(3):299-308. PubMed ID: 15180551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-, Time-, and Wavevector-Resolved Ultrafast Incoherent Diffraction of Noisy X-ray Pulses.
    Asban S; Cho D; Mukamel S
    J Phys Chem Lett; 2019 Oct; 10(19):5805-5814. PubMed ID: 31503495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.