These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33376588)

  • 1. Contrasting growth responses to aluminium addition among populations of the aluminium accumulator
    Mahmud K; Burslem DFRP
    AoB Plants; 2020 Oct; 12(5):plaa049. PubMed ID: 33376588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controls on foliar aluminium accumulation among populations of the tropical shrub Melastoma malabathricum L. (Melastomataceae).
    Khairil M; Burslem DFRP
    Tree Physiol; 2018 Nov; 38(11):1752-1760. PubMed ID: 30137635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root mucilage enhances aluminum accumulation in Melastoma malabathricum, an aluminum accumulator.
    Watanabe T; Misawa S; Hiradate S; Osaki M
    Plant Signal Behav; 2008 Aug; 3(8):603-5. PubMed ID: 19704812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The beneficial effect of aluminium and the role of citrate in Al accumulation in Melastoma malabathricum.
    Watanabe T; Jansen S; Osaki M
    New Phytol; 2005 Mar; 165(3):773-80. PubMed ID: 15720688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Al-Fe interactions and growth enhancement in Melastoma malabathricum and Miscanthus sinensis dominating acid sulphate soils.
    Watanabe T; Jansen S; Osaki M
    Plant Cell Environ; 2006 Dec; 29(12):2124-32. PubMed ID: 17081246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of organic acids in aluminum accumulation and plant growth in Melastoma malabathricum.
    Watanabe T; Osaki M
    Tree Physiol; 2002 Aug; 22(11):785-92. PubMed ID: 12184982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of root mucilage from Melastoma malabathricum, with emphasis on its roles in aluminum accumulation.
    Watanabe T; Misawa S; Hiradate S; Osaki M
    New Phytol; 2008; 178(3):581-9. PubMed ID: 18373518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controls on foliar nutrient and aluminium concentrations in a tropical tree flora: phylogeny, soil chemistry and interactions among elements.
    Metali F; Abu Salim K; Tennakoon K; Burslem DF
    New Phytol; 2015 Jan; 205(1):280-92. PubMed ID: 25138655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic Amendments Effects on Nutrient Uptake, Secondary Metabolites, and Antioxidant Properties of
    Rusli LS; Abdullah R; Yaacob JS; Osman N
    Plants (Basel); 2022 Jan; 11(2):. PubMed ID: 35050041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutritional characteristics of the leaves of native plants growing in adverse soils of humid tropical lowlands.
    Osaki M; Watanabe T; Ishizawa T; Nilnond C; Nuyim T; Shinano T; Urayama M; Tuah SJ
    Plant Foods Hum Nutr; 2003; 58(2):93-115. PubMed ID: 12906350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of aluminium and nutrient concentrations in mistletoes on aluminium-accumulating and non-accumulating hosts.
    Scalon MC; Haridasan M; Franco AC
    Plant Biol (Stuttg); 2013 Sep; 15(5):851-7. PubMed ID: 23452024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root architecture, rooting profiles and physiological responses of potential slope plants grown on acidic soil.
    Dorairaj D; Suradi MF; Mansor NS; Osman N
    PeerJ; 2020; 8():e9595. PubMed ID: 32904129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular identification of natural hybridization between
    Wu R; Zou P; Tan G; Hu Z; Wang Y; Ning Z; Wu W; Liu Y; He S; Zhou R
    Ecol Evol; 2019 May; 9(10):5766-5776. PubMed ID: 31160997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of foliar aluminium accumulation in local, regional and global datasets of wild plants.
    Metali F; Salim KA; Burslem DFRP
    New Phytol; 2012 Feb; 193(3):637-649. PubMed ID: 22111583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of aluminium on plant growth in a temperate and deciduous aluminium accumulating species.
    Schmitt M; Watanabe T; Jansen S
    AoB Plants; 2016; 8():. PubMed ID: 27613876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absence of aluminium compromises root integrity, reduces leaf hydration and Rubisco performance in Qualea grandiflora, an Al-accumulating species.
    Silva GS; Rodrigues JS; Carvalho BMDO; Gavassi MA; Bressan ACG; Habermann G
    Plant Biol (Stuttg); 2023 Aug; 25(5):740-749. PubMed ID: 37158679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conostegia xalapensis (Melastomataceae): an aluminum accumulator plant.
    González-Santana IH; Márquez-Guzmán J; Cram-Heydrich S; Cruz-Ortega R
    Physiol Plant; 2012 Feb; 144(2):134-45. PubMed ID: 21973178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between aluminium and silicon accumulation in leaves of Faramea marginata (Rubiaceae).
    Britez RM; Watanabe T; Jansen S; Reissmann CB; Osaki M
    New Phytol; 2002 Dec; 156(3):437-444. PubMed ID: 33873582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure.
    Selamat SN; Abdullah SR; Idris M
    Int J Phytoremediation; 2014; 16(7-12):694-703. PubMed ID: 24933879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.