These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33376887)

  • 1. Mineral and Heavy Metal Composition of Oil Shale Ash from Oxyfuel Combustion.
    Konist A; Neshumayev D; Baird ZS; Anthony EJ; Maasikmets M; Järvik O
    ACS Omega; 2020 Dec; 5(50):32498-32506. PubMed ID: 33376887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia--the impact of new circulating fluidized bed technology.
    Vaasma T; Kiisk M; Meriste T; Tkaczyk AH
    J Environ Radioact; 2014 Mar; 129():133-9. PubMed ID: 24462922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.
    Vaasma T; Kiisk M; Meriste T; Tkaczyk AH
    J Environ Radioact; 2014 Dec; 138():427-33. PubMed ID: 24661430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emissions and risks associated with oxyfuel combustion: state of the science and critical data gaps.
    Senior CL; Morris W; Lewandowski TA
    J Air Waste Manag Assoc; 2013 Jul; 63(7):832-43. PubMed ID: 23926852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translocation and toxicity assessment of heavy metals from circulated fluidized-bed combustion of oil shale in Huadian, China.
    Luan J; Li A; Su T; Li X
    J Hazard Mater; 2009 Jul; 166(2-3):1109-14. PubMed ID: 19144468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental hazard of oil shale combustion fly ash.
    Blinova I; Bityukova L; Kasemets K; Ivask A; Käkinen A; Kurvet I; Bondarenko O; Kanarbik L; Sihtmäe M; Aruoja V; Schvede H; Kahru A
    J Hazard Mater; 2012 Aug; 229-230():192-200. PubMed ID: 22717068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 mineral sequestration in oil-shale wastes from Estonian power production.
    Uibu M; Uus M; Kuusik R
    J Environ Manage; 2009 Feb; 90(2):1253-60. PubMed ID: 18793821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury Adsorption and Oxidation over Cobalt Oxide Loaded Magnetospheres Catalyst from Fly Ash in Oxyfuel Combustion Flue Gas.
    Yang J; Zhao Y; Chang L; Zhang J; Zheng C
    Environ Sci Technol; 2015 Jul; 49(13):8210-8. PubMed ID: 26024429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments.
    Mõtlep R; Sild T; Puura E; Kirsimäe K
    J Hazard Mater; 2010 Dec; 184(1-3):567-573. PubMed ID: 20855159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion.
    Reddy MS; Basha S; Joshi HV; Jha B
    J Hazard Mater; 2005 Aug; 123(1-3):242-9. PubMed ID: 15916850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developments in CO2 mineral carbonation of oil shale ash.
    Uibu M; Velts O; Kuusik R
    J Hazard Mater; 2010 Feb; 174(1-3):209-14. PubMed ID: 19783091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal characterization of circulating fluidized bed derived biomass ash.
    Li L; Yu C; Bai J; Wang Q; Luo Z
    J Hazard Mater; 2012 Sep; 233-234():41-7. PubMed ID: 22840499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence on gaseous pollutants emissions and fly ash characteristics from co-combustion of municipal solid waste and coal by a drop tube furnace.
    Zhang S; Lin X; Chen Z; Li X; Jiang X; Yan J
    Waste Manag; 2018 Nov; 81():33-40. PubMed ID: 30527041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The distribution of heavy metals during fluidized bed combustion of sludge (FBSC).
    Van de Velden M; Dewil R; Baeyens J; Josson L; Lanssens P
    J Hazard Mater; 2008 Feb; 151(1):96-102. PubMed ID: 17601665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxyfuel Combustion Makes Carbon Capture More Efficient.
    Talei S; Fozer D; Varbanov PS; Szanyi A; Mizsey P
    ACS Omega; 2024 Jan; 9(3):3250-3261. PubMed ID: 38284075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of Cr(VI) in ashes from fluidized bed combustion of municipal solid waste: leaching, secondary reactions and the applicability of some speciation methods.
    Abbas ZA; Steenari BM; Lindqvist O
    Waste Manag; 2001; 21(8):725-39. PubMed ID: 11699630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus.
    Skoglund N; Grimm A; Ohman M; Boström D
    Energy Fuels; 2014 Feb; 28(2):1183-1190. PubMed ID: 24678140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pb-210 and Po-210 atmospheric releases via fly ash from oil shale-fired power plants.
    Vaasma T; Loosaar J; Gyakwaa F; Kiisk M; Özden B; Tkaczyk AH
    Environ Pollut; 2017 Mar; 222():210-218. PubMed ID: 28062225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emissions from a fast-pyrolysis bio-oil fired boiler: Comparison of health-related characteristics of emissions from bio-oil, fossil oil and wood.
    Sippula O; Huttunen K; Hokkinen J; Kärki S; Suhonen H; Kajolinna T; Kortelainen M; Karhunen T; Jalava P; Uski O; Yli-Pirilä P; Hirvonen MR; Jokiniemi J
    Environ Pollut; 2019 May; 248():888-897. PubMed ID: 30856504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.
    Dong H; Jiang X; Lv G; Chi Y; Yan J
    Waste Manag; 2015 Dec; 46():227-33. PubMed ID: 26278370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.