BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33377031)

  • 1. Protocol for Proximity-Dependent Proteomic Profiling in Yeast Cells by APEX and Alk-Ph Probe.
    Li Y; Liu K; Zhou Y; Yang J; Zou P
    STAR Protoc; 2020 Dec; 1(3):100137. PubMed ID: 33377031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Clickable APEX Probe for Proximity-Dependent Proteomic Profiling in Yeast.
    Li Y; Tian C; Liu K; Zhou Y; Yang J; Zou P
    Cell Chem Biol; 2020 Jul; 27(7):858-865.e8. PubMed ID: 32470320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping protein networks in yeast mitochondria using proximity-dependent biotin identification coupled to proteomics.
    Salvatori R; Aftab W; Forne I; Imhof A; Ott M; Singh AP
    STAR Protoc; 2020 Dec; 1(3):100219. PubMed ID: 33377112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic Mapping by APEX2-Catalyzed Proximity Labeling in Saccharomyces cerevisiae Semipermeabilized Cells.
    Singer-Krüger B; Jansen RP
    Methods Mol Biol; 2022; 2477():261-274. PubMed ID: 35524122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Optimized Protocol for Proximity Biotinylation in Confluent Epithelial Cell Cultures Using the Peroxidase APEX2.
    Tan B; Peng S; Yatim SMJM; Gunaratne J; Hunziker W; Ludwig A
    STAR Protoc; 2020 Sep; 1(2):100074. PubMed ID: 33111110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. APEX Proximity Labeling as a Versatile Tool for Biological Research.
    Nguyen TMT; Kim J; Doan TT; Lee MW; Lee M
    Biochemistry; 2020 Jan; 59(3):260-269. PubMed ID: 31718172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2.
    Hung V; Udeshi ND; Lam SS; Loh KH; Cox KJ; Pedram K; Carr SA; Ting AY
    Nat Protoc; 2016 Mar; 11(3):456-75. PubMed ID: 26866790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. APEX Peroxidase-Catalyzed Proximity Labeling and Multiplexed Quantitative Proteomics.
    Kalocsay M
    Methods Mol Biol; 2019; 2008():41-55. PubMed ID: 31124087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proximity-dependent biotin labelling in yeast using the engineered ascorbate peroxidase APEX2.
    Hwang J; Espenshade PJ
    Biochem J; 2016 Aug; 473(16):2463-9. PubMed ID: 27274088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol for clickable photoaffinity labeling and quantitative chemical proteomics.
    Lee W; Huang Z; Am Ende CW; Seneviratne U
    STAR Protoc; 2021 Jun; 2(2):100593. PubMed ID: 34169287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding APEX2 Substrates for Proximity-Dependent Labeling of Nucleic Acids and Proteins in Living Cells.
    Zhou Y; Wang G; Wang P; Li Z; Yue T; Wang J; Zou P
    Angew Chem Int Ed Engl; 2019 Aug; 58(34):11763-11767. PubMed ID: 31240809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MERR APEX-seq protocol for profiling the subcellular nascent transcriptome in mammalian cells.
    Li R; Zou P
    STAR Protoc; 2023 Mar; 4(1):102057. PubMed ID: 36853684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Lipid Droplet Proteomes by Proximity Labeling Proteomics Using APEX2.
    Bersuker K; Olzmann JA
    Methods Mol Biol; 2019; 2008():57-72. PubMed ID: 31124088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clickable APEX2 Probes for Enhanced RNA Proximity Labeling in Live Cells.
    Liang J; Han J; Gao X; Jia H; Li R; Tse ECM; Li Y
    Anal Chem; 2024 Jan; 96(2):685-693. PubMed ID: 38099807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BioSITe: A Method for Direct Detection and Quantitation of Site-Specific Biotinylation.
    Kim DI; Cutler JA; Na CH; Reckel S; Renuse S; Madugundu AK; Tahir R; Goldschmidt HL; Reddy KL; Huganir RL; Wu X; Zachara NE; Hantschel O; Pandey A
    J Proteome Res; 2018 Feb; 17(2):759-769. PubMed ID: 29249144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking.
    Kaewsapsak P; Shechner DM; Mallard W; Rinn JL; Ting AY
    Elife; 2017 Dec; 6():. PubMed ID: 29239719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic navigation using proximity-labeling.
    Gentzel M; Pardo M; Subramaniam S; Stewart AF; Choudhary JS
    Methods; 2019 Jul; 164-165():67-72. PubMed ID: 30953756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differently Tagged Probes for Protein Profiling of Mitochondria.
    Dong J; Hong D; Lang W; Huang J; Qian L; Zhu Q; Li L; Ge J
    Chembiochem; 2019 May; 20(9):1155-1160. PubMed ID: 30600897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructural localization of
    Tsuji T; Fujimoto T
    STAR Protoc; 2021 Dec; 2(4):100990. PubMed ID: 34934959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Context-Specific and Proximity-Dependent Labeling for the Proteomic Analysis of Spatiotemporally Defined Protein Complexes with Split-BioID.
    Ramirez CA; Egetemaier S; Béthune J
    Methods Mol Biol; 2021; 2247():303-318. PubMed ID: 33301125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.