These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33377031)

  • 21. Context-Specific and Proximity-Dependent Labeling for the Proteomic Analysis of Spatiotemporally Defined Protein Complexes with Split-BioID.
    Ramirez CA; Egetemaier S; Béthune J
    Methods Mol Biol; 2021; 2247():303-318. PubMed ID: 33301125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactome analysis of Caenorhabditis elegans synapses by TurboID-based proximity labeling.
    Artan M; Barratt S; Flynn SM; Begum F; Skehel M; Nicolas A; de Bono M
    J Biol Chem; 2021 Sep; 297(3):101094. PubMed ID: 34416233
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proximity labeling: spatially resolved proteomic mapping for neurobiology.
    Han S; Li J; Ting AY
    Curr Opin Neurobiol; 2018 Jun; 50():17-23. PubMed ID: 29125959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protocol for analysis of RNA-sequencing and proteome profiling data for subgroup identification and comparison.
    Yang KC; Gorski SM
    STAR Protoc; 2022 Jun; 3(2):101283. PubMed ID: 35634361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A metabolic labeling protocol to enrich myristoylated proteins from
    Gong X; Feng Y; Tang H
    STAR Protoc; 2021 Dec; 2(4):101013. PubMed ID: 34917984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [New approaches for protein-protein interaction study].
    Béganton B; Coyaud E; Mangé A; Solassol J
    Med Sci (Paris); 2019 Mar; 35(3):223-231. PubMed ID: 30931906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proximity biotinylation to define the local environment of the protein kinase A catalytic subunit in adrenal cells.
    Omar MH; Lauer SM; Lau HT; Golkowski M; Ong SE; Scott JD
    STAR Protoc; 2023 Mar; 4(1):101992. PubMed ID: 36607814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. APEX2 Proximity Proteomics Resolves Flagellum Subdomains and Identifies Flagellum Tip-Specific Proteins in Trypanosoma brucei.
    Vélez-Ramírez DE; Shimogawa MM; Ray SS; Lopez A; Rayatpisheh S; Langousis G; Gallagher-Jones M; Dean S; Wohlschlegel JA; Hill KL
    mSphere; 2021 Feb; 6(1):. PubMed ID: 33568455
    [No Abstract]   [Full Text] [Related]  

  • 29. Click-chemistry tagging of proteins in living cells: new possibilities for microbial (meta) proteomics.
    MacGregor BJ
    Environ Microbiol; 2014 Aug; 16(8):2353-6. PubMed ID: 25040824
    [No Abstract]   [Full Text] [Related]  

  • 30. Labeling yeast peptides with the iTRAQ reagent.
    Simon ES
    Cold Spring Harb Protoc; 2011 Jun; 2011(6):676-80. PubMed ID: 21632783
    [No Abstract]   [Full Text] [Related]  

  • 31. Protocol for Efficient Protein Synthesis Detection by Click Chemistry in Colorectal Cancer Patient-Derived Organoids Grown
    Morral C; Stanisavljevic J; Batlle E
    STAR Protoc; 2020 Sep; 1(2):100103. PubMed ID: 33000005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative Secretome Analysis of Activated Jurkat Cells Using Click Chemistry-Based Enrichment of Secreted Glycoproteins.
    Witzke KE; Rosowski K; Müller C; Ahrens M; Eisenacher M; Megger DA; Knobloch J; Koch A; Bracht T; Sitek B
    J Proteome Res; 2017 Jan; 16(1):137-146. PubMed ID: 27696881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drug Target Identification Using an iTRAQ-Based Quantitative Chemical Proteomics Approach-Based on a Target Profiling Study of Andrographolide.
    Wang J; Wong YK; Zhang J; Lee YM; Hua ZC; Shen HM; Lin Q
    Methods Enzymol; 2017; 586():291-309. PubMed ID: 28137568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. APEX2-mediated proximity labeling resolves protein networks in Saccharomyces cerevisiae cells.
    Singer-Krüger B; Fröhlich T; Franz-Wachtel M; Nalpas N; Macek B; Jansen RP
    FEBS J; 2020 Jan; 287(2):325-344. PubMed ID: 31323700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Small Molecule Interactome Mapping by Photo-Affinity Labeling (SIM-PAL) to Identify Binding Sites of Small Molecules on a Proteome-Wide Scale.
    Flaxman HA; Miyamoto DK; Woo CM
    Curr Protoc Chem Biol; 2019 Dec; 11(4):e75. PubMed ID: 31763793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proximity-dependent labeling methods for proteomic profiling in living cells.
    Chen CL; Perrimon N
    Wiley Interdiscip Rev Dev Biol; 2017 Jul; 6(4):. PubMed ID: 28387482
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protocols for identifying endogenous interactors of RNA-binding proteins in mammalian cells using the peroxidase APEX2 biotin-labeling method.
    Uozumi R; Mori K; Akamine S; Ikeda M
    STAR Protoc; 2024 Dec; 5(4):103368. PubMed ID: 39392747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isoelectric focusing of iTRAQ-labeled yeast.
    Simon ES
    Cold Spring Harb Protoc; 2011 Jun; 2011(6):686-94. PubMed ID: 21632781
    [No Abstract]   [Full Text] [Related]  

  • 39. Protein Neighbors and Proximity Proteomics.
    Rees JS; Li XW; Perrett S; Lilley KS; Jackson AP
    Mol Cell Proteomics; 2015 Nov; 14(11):2848-56. PubMed ID: 26355100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Utilization of a Branched Late-Stage Clickable Biotinylated Chassis on the Example of a Pittsburgh B Analogue.
    Weber TM; Özdüzenciler P; Tamgüney G; Pietruszka J
    Org Lett; 2024 Aug; 26(31):6771-6775. PubMed ID: 39051841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.