These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33377036)

  • 21. Measuring Transcription Dynamics of Individual Genes Inside Living Cells.
    Brouwer I; de Kort MAC; Lenstra TL
    Methods Mol Biol; 2024; 2694():235-265. PubMed ID: 37824008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards mapping the 3D genome through high speed single-molecule tracking of functional transcription factors in single living cells.
    Wollman AJM; Hedlund EG; Shashkova S; Leake MC
    Methods; 2020 Jan; 170():82-89. PubMed ID: 31252059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-objective light sheet microscopy.
    Strack R
    Nat Methods; 2021 Jan; 18(1):28. PubMed ID: 33408385
    [No Abstract]   [Full Text] [Related]  

  • 24. Generating kinetic environments to study dynamic cellular processes in single cells.
    Thiemicke A; Jashnsaz H; Li G; Neuert G
    Sci Rep; 2019 Jul; 9(1):10129. PubMed ID: 31300695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-throughput genetic screening of meiotic commitment using fluorescence microscopy in 
    Gavade JN; Lacefield S
    STAR Protoc; 2022 Dec; 3(4):101797. PubMed ID: 36325582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protocol for single-molecule fluorescence recovery after photobleaching microscopy to analyze the dynamics and spatial locations of nuclear transmembrane proteins in live cells.
    Tingey M; Li Y; Yang W
    STAR Protoc; 2021 Jun; 2(2):100490. PubMed ID: 34007970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-molecule tracking for studying protein dynamics and target-search mechanism in live cells of S. cerevisiae.
    Podh NK; Das A; Dey P; Paliwal S; Mehta G
    STAR Protoc; 2022 Dec; 3(4):101900. PubMed ID: 36595957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell-to-Cell Transcription Variability as Measured by Single-Molecule RNA FISH to Detect Epigenetic State Switching.
    Beckman W; Vuist IM; Kempe H; Verschure PJ
    Methods Mol Biol; 2018; 1767():385-393. PubMed ID: 29524147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protocol for live-cell super-resolution imaging of transport of pre-ribosomal subunits through the nuclear pore complex.
    Tingey M; Junod SL; Rush C; Yang W
    STAR Protoc; 2024 Mar; 5(1):102790. PubMed ID: 38113144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Manipulating mRNA-binding protein Cth2 function in budding yeast Saccharomyces cerevisiae.
    Patnaik PK; Barlit H; Labunskyy VM
    STAR Protoc; 2024 Mar; 5(1):102807. PubMed ID: 38165801
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-molecule analysis of gene expression using two-color RNA labeling in live yeast.
    Hocine S; Raymond P; Zenklusen D; Chao JA; Singer RH
    Nat Methods; 2013 Feb; 10(2):119-21. PubMed ID: 23263691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription.
    Rosen GA; Baek I; Friedman LJ; Joo YJ; Buratowski S; Gelles J
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32348-32357. PubMed ID: 33293419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Throughput Microscopy-Based Screening in Saccharomyces cerevisiae.
    Styles EB; Friesen H; Boone C; Andrews BJ
    Cold Spring Harb Protoc; 2016 Apr; 2016(4):pdb.top087593. PubMed ID: 27037080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An adaptable live-cell imaging protocol to analyze organelle morphology in
    Deolal P; Mishra K
    STAR Protoc; 2022 Mar; 3(1):101124. PubMed ID: 35243366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A DNA-fiber protocol for single molecule analysis of telomere (SMAT) length and extension events in cancer cells.
    Lu R; Allen JAM; Galaviz P; Pickett HA
    STAR Protoc; 2022 Mar; 3(1):101212. PubMed ID: 35265860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single yeast cell imaging.
    Wolinski H; Kohlwein SD
    Methods Mol Biol; 2014; 1205():91-109. PubMed ID: 25213241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNA and Protein Detection by Single-Molecule Fluorescent in Situ Hybridization (smFISH) Combined with Immunofluorescence in the Budding Yeast S. cerevisiae.
    Maekiniemi A; Singer RH
    Methods Mol Biol; 2024; 2784():45-58. PubMed ID: 38502477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Follow-up review: recent progress in the development of super-resolution optical microscopy.
    Fujita K
    Microscopy (Oxf); 2016 Aug; 65(4):275-81. PubMed ID: 27385787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of local protein accumulation kinetics by live-cell imaging in yeast systems.
    Okada H; MacTaggart B; Bi E
    STAR Protoc; 2021 Sep; 2(3):100733. PubMed ID: 34458867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deciphering live-cell biomolecular dynamics with single-molecule fluorescence imaging.
    Gao Z; Li Q; Fan C; Hou S
    Sci Bull (Beijing); 2024 Jun; 69(12):1823-1828. PubMed ID: 38594097
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.