BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33377052)

  • 1. Generation of PAX7 Reporter Cells to Investigate Skeletal Myogenesis from Human Pluripotent Stem Cells.
    Xi H; Young CS; Pyle AD
    STAR Protoc; 2020 Dec; 1(3):100158. PubMed ID: 33377052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation and validation of PAX7 reporter lines from human iPS cells using CRISPR/Cas9 technology.
    Wu J; Hunt SD; Xue H; Liu Y; Darabi R
    Stem Cell Res; 2016 Mar; 16(2):220-8. PubMed ID: 26826926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage
    Al Tanoury Z; Rao J; Tassy O; Gobert B; Gapon S; Garnier JM; Wagner E; Hick A; Hall A; Gussoni E; Pourquié O
    Development; 2020 Jun; 147(12):. PubMed ID: 32541004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myogenic Progenitor Cell Lineage Specification by CRISPR/Cas9-Based Transcriptional Activators.
    Kwon JB; Vankara A; Ettyreddy AR; Bohning JD; Gersbach CA
    Stem Cell Reports; 2020 May; 14(5):755-769. PubMed ID: 32330446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Myogenic Double-Reporter Human Pluripotent Stem Cell Line Allows Prospective Isolation of Skeletal Muscle Progenitors.
    Wu J; Matthias N; Lo J; Ortiz-Vitali JL; Shieh AW; Wang SH; Darabi R
    Cell Rep; 2018 Nov; 25(7):1966-1981.e4. PubMed ID: 30428361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human skeletal muscle organoids model fetal myogenesis and sustain uncommitted PAX7 myogenic progenitors.
    Mavrommatis L; Jeong HW; Kindler U; Gomez-Giro G; Kienitz MC; Stehling M; Psathaki OE; Zeuschner D; Bixel MG; Han D; Morosan-Puopolo G; Gerovska D; Yang JH; Kim JB; Arauzo-Bravo MJ; Schwamborn JC; Hahn SA; Adams RH; Schöler HR; Vorgerd M; Brand-Saberi B; Zaehres H
    Elife; 2023 Nov; 12():. PubMed ID: 37963071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIX1+PAX3+ identify a progenitor for myogenic lineage commitment from hPSCs.
    Jaime OG; Arias J; Pavani S; Pyle AD; Hicks MR
    Development; 2023 Jul; 150(14):. PubMed ID: 37366057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Modification in Human Pluripotent Stem Cells by Homologous Recombination and CRISPR/Cas9 System.
    Xue H; Wu J; Li S; Rao MS; Liu Y
    Methods Mol Biol; 2016; 1307():173-90. PubMed ID: 24615461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs.
    Hicks MR; Hiserodt J; Paras K; Fujiwara W; Eskin A; Jan M; Xi H; Young CS; Evseenko D; Nelson SF; Spencer MJ; Handel BV; Pyle AD
    Nat Cell Biol; 2018 Jan; 20(1):46-57. PubMed ID: 29255171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recapitulating human myogenesis ex vivo using human pluripotent stem cells.
    Chien P; Xi H; Pyle AD
    Exp Cell Res; 2022 Feb; 411(2):112990. PubMed ID: 34973262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive Protocols for CRISPR/Cas9-based Gene Editing in Human Pluripotent Stem Cells.
    Santos DP; Kiskinis E; Eggan K; Merkle FT
    Curr Protoc Stem Cell Biol; 2016 Aug; 38():5B.6.1-5B.6.60. PubMed ID: 27532820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR-206 and -486 induce myoblast differentiation by downregulating Pax7.
    Dey BK; Gagan J; Dutta A
    Mol Cell Biol; 2011 Jan; 31(1):203-14. PubMed ID: 21041476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myogenic Differentiation of Mouse Embryonic Stem Cells That Lack a Functional Pax7 Gene.
    Czerwinska AM; Grabowska I; Archacka K; Bem J; Swierczek B; Helinska A; Streminska W; Fogtman A; Iwanicka-Nowicka R; Koblowska M; Ciemerych MA
    Stem Cells Dev; 2016 Feb; 25(4):285-300. PubMed ID: 26649785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pax7 remodels the chromatin landscape in skeletal muscle stem cells.
    Lilja KC; Zhang N; Magli A; Gunduz V; Bowman CJ; Arpke RW; Darabi R; Kyba M; Perlingeiro R; Dynlacht BD
    PLoS One; 2017; 12(4):e0176190. PubMed ID: 28441415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas-Mediated Knockin in Human Pluripotent Stem Cells.
    Verma N; Zhu Z; Huangfu D
    Methods Mol Biol; 2017; 1513():119-140. PubMed ID: 27807834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells.
    Ihry RJ; Worringer KA; Salick MR; Frias E; Ho D; Theriault K; Kommineni S; Chen J; Sondey M; Ye C; Randhawa R; Kulkarni T; Yang Z; McAllister G; Russ C; Reece-Hoyes J; Forrester W; Hoffman GR; Dolmetsch R; Kaykas A
    Nat Med; 2018 Jul; 24(7):939-946. PubMed ID: 29892062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling transcription in human pluripotent stem cells using CRISPR-effectors.
    Genga RM; Kearns NA; Maehr R
    Methods; 2016 May; 101():36-42. PubMed ID: 26525193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of
    Pelletier S; Tummers B; Green DR
    STAR Protoc; 2020 Dec; 1(3):100181. PubMed ID: 33377075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pipeline for the Generation and Characterization of Transgenic Human Pluripotent Stem Cells Using the CRISPR/Cas9 Technology.
    Mianné J; Bourguignon C; Nguyen Van C; Fieldès M; Nasri A; Assou S; De Vos J
    Cells; 2020 May; 9(5):. PubMed ID: 32466123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pluripotent stem cell-derived myogenic progenitors remodel their molecular signature upon in vivo engraftment.
    Incitti T; Magli A; Darabi R; Yuan C; Lin K; Arpke RW; Azzag K; Yamamoto A; Stewart R; Thomson JA; Kyba M; Perlingeiro RCR
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4346-4351. PubMed ID: 30760602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.