These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33377058)

  • 1. Organoid Sample Preparation and Extraction for LC-MS Peptidomics.
    Miedzybrodzka EL; Foreman RE; Galvin SG; Larraufie P; George AL; Goldspink DA; Reimann F; Gribble FM; Kay RG
    STAR Protoc; 2020 Dec; 1(3):100164. PubMed ID: 33377058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of cell-type-specific proteomes of neurodevelopment from human cerebral organoids.
    Melliou S; Diamandis P
    STAR Protoc; 2022 Dec; 3(4):101774. PubMed ID: 36313540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid preparation of human blood plasma for bottom-up proteomics analysis.
    Shishkova E; Coon JJ
    STAR Protoc; 2021 Dec; 2(4):100856. PubMed ID: 34661170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted Proteomics.
    Chen Y; Liu L
    Methods Mol Biol; 2019; 1871():265-277. PubMed ID: 30276745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying phosphorylation dynamics in primary neuronal cultures using LC-MS/MS.
    Desch K; Schuman EM; Langer JD
    STAR Protoc; 2022 Mar; 3(1):101063. PubMed ID: 35005645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptidomic Workflow Applied to Cerebrospinal Fluid Analysis.
    Ziganshin RH; Kovalchuk SI; Azarkin IV
    Methods Mol Biol; 2019; 2044():111-118. PubMed ID: 31432409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food peptidomics of in vitro gastrointestinal digestions of partially purified bovine hemoglobin: low-resolution versus high-resolution LC-MS/MS analyses.
    Caron J; Chataigné G; Gimeno JP; Duhal N; Goossens JF; Dhulster P; Cudennec B; Ravallec R; Flahaut C
    Electrophoresis; 2016 Jul; 37(13):1814-22. PubMed ID: 26990205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical pulldown combined with mass spectrometry to identify the molecular targets of antimalarials in cell-free lysates.
    Smith RJ; Milne R; Lopez VC; Wiedemar N; Dey G; Syed AJ; Patterson S; Wyllie S
    STAR Protoc; 2023 Mar; 4(1):102002. PubMed ID: 36609153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization for Peptide Sample Preparation for Urine Peptidomics.
    Sigdel TK; Nicora CD; Qian WJ; Sarwal MM
    Methods Mol Biol; 2018; 1788():63-72. PubMed ID: 29623538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medicago truncatula proteomics for systems biology: novel rapid shotgun LC-MS approach for relative quantification based on full-scan selective peptide extraction (Selpex).
    Castillejo MA; Staudinger C; Egelhofer V; Wienkoop S
    Methods Mol Biol; 2014; 1072():303-13. PubMed ID: 24136531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly efficient method for extracting peptides from a single mouse hypothalamus.
    Nakagawa Y; Matsui T; Konno R; Kawashima Y; Sato T; Itakura M; Kodera Y
    Biochem Biophys Res Commun; 2021 Apr; 548():155-160. PubMed ID: 33640609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optimized co-immunoprecipitation protocol for the analysis of endogenous protein-protein interactions in cell lines using mass spectrometry.
    Lagundžin D; Krieger KL; Law HC; Woods NT
    STAR Protoc; 2022 Mar; 3(1):101234. PubMed ID: 35300004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptidomics of three Bothrops snake venoms: insights into the molecular diversification of proteomes and peptidomes.
    Tashima AK; Zelanis A; Kitano ES; Ianzer D; Melo RL; Rioli V; Sant'anna SS; Schenberg AC; Camargo AC; Serrano SM
    Mol Cell Proteomics; 2012 Nov; 11(11):1245-62. PubMed ID: 22869554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous pH/salt gradient and peptide score for strong cation exchange chromatography in 2D-nano-LC/MS/MS peptide identification for proteomics.
    Winnik WM
    Anal Chem; 2005 Aug; 77(15):4991-8. PubMed ID: 16053314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptidomic approaches to the identification and characterization of functional peptides in Hydra.
    Takahashi T; Fujisawa T
    Methods Mol Biol; 2010; 615():275-92. PubMed ID: 20013216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of sample preparation on analysis of human milk endogenous peptides using liquid chromatography-tandem mass spectrometry].
    Yu W; Yu Y; Wang W; Li Y; Szeto IM; Jin Y
    Se Pu; 2021 May; 39(5):463-471. PubMed ID: 34227330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS).
    Pfammatter S; Bonneil E; McManus FP; Thibault P
    J Proteome Res; 2019 May; 18(5):2129-2138. PubMed ID: 30919622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptidomics of the zebrafish Danio rerio: In search for neuropeptides.
    Van Camp KA; Baggerman G; Blust R; Husson SJ
    J Proteomics; 2017 Jan; 150():290-296. PubMed ID: 27705817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol for global proteome, virome, and metaproteome profiling of respiratory specimen (VTM) in COVID-19 patient by LC-MS/MS-based analysis.
    Tripathi G; Sharma N; Bindal V; Yadav M; Mathew B; Sharma S; Gupta E; Singh Maras J; Sarin SK
    STAR Protoc; 2022 Mar; 3(1):101045. PubMed ID: 34870243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptidomics of enteroendocrine cells and characterisation of potential effects of a novel preprogastrin derived-peptide on glucose tolerance in lean mice.
    Galvin SG; Larraufie P; Kay RG; Pitt H; Bernard E; McGavigan AK; Brant H; Hood J; Sheldrake L; Conder S; Atherton-Kemp D; Lu VB; O'Flaherty EAA; Roberts GP; Ämmälä C; Jermutus L; Baker D; Gribble FM; Reimann F
    Peptides; 2021 Jun; 140():170532. PubMed ID: 33744371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.