BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33377115)

  • 1. Two-parameter single-molecule analysis for measurement of chromatin mobility.
    Lerner J; Gómez-García PA; McCarthy RL; Liu Z; Lakadamyali M; Zaret KS
    STAR Protoc; 2020 Dec; 1(3):100223. PubMed ID: 33377115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Parameter Mobility Assessments Discriminate Diverse Regulatory Factor Behaviors in Chromatin.
    Lerner J; Gomez-Garcia PA; McCarthy RL; Liu Z; Lakadamyali M; Zaret KS
    Mol Cell; 2020 Aug; 79(4):677-688.e6. PubMed ID: 32574554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the global binding and target-search dynamics of epigenetic regulatory factors using live-cell single-molecule tracking.
    Brown K; Kent S; Ren X
    STAR Protoc; 2021 Dec; 2(4):100959. PubMed ID: 34825219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of Telomerase RNA by Single-Molecule Inexpensive FISH Combined with Immunofluorescence.
    Querido E; Sfeir A; Chartrand P
    STAR Protoc; 2020 Sep; 1(2):100104. PubMed ID: 33111129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule tracking of transcription protein dynamics in living cells: seeing is believing, but what are we seeing?
    Lionnet T; Wu C
    Curr Opin Genet Dev; 2021 Apr; 67():94-102. PubMed ID: 33422933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET-enhanced photostability allows improved single-molecule tracking of proteins and protein complexes in live mammalian cells.
    Basu S; Needham LM; Lando D; Taylor EJR; Wohlfahrt KJ; Shah D; Boucher W; Tan YL; Bates LE; Tkachenko O; Cramard J; Lagerholm BC; Eggeling C; Hendrich B; Klenerman D; Lee SF; Laue ED
    Nat Commun; 2018 Jun; 9(1):2520. PubMed ID: 29955052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Tracking of Parental Histones Reveals Their Contribution to Chromatin Integrity Following DNA Damage.
    Adam S; Dabin J; Chevallier O; Leroy O; Baldeyron C; Corpet A; Lomonte P; Renaud O; Almouzni G; Polo SE
    Mol Cell; 2016 Oct; 64(1):65-78. PubMed ID: 27642047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Molecule Fluorescence Imaging in Living
    Brouwer I; Patel HP; Meeussen JVW; Pomp W; Lenstra TL
    STAR Protoc; 2020 Dec; 1(3):100142. PubMed ID: 33377036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observing protein interaction dynamics to chemically defined chromatin fibers by colocalization single-molecule fluorescence microscopy.
    Mivelaz M; Fierz B
    Methods; 2020 Dec; 184():112-124. PubMed ID: 32004546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-molecule tracking for studying protein dynamics and target-search mechanism in live cells of S. cerevisiae.
    Podh NK; Das A; Dey P; Paliwal S; Mehta G
    STAR Protoc; 2022 Dec; 3(4):101900. PubMed ID: 36595957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol for induction and characterization of microglia extracellular traps in murine and human microglia cells.
    Agrawal I; Sharma N; Saxena S; Arvind S; Chakraborty D; Chakraborty DB; Jha D; Ghatak S; Epari S; Gupta T; Jha S
    STAR Protoc; 2021 Sep; 2(3):100678. PubMed ID: 34355202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying transport dynamics with three-dimensional single-particle tracking in adherent cells.
    Jiang C; Dou SX; Wang PY; Li H
    STAR Protoc; 2022 Dec; 3(4):101790. PubMed ID: 36317175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A protocol to quantify chromatin compaction with confocal and super-resolution microscopy in cultured cells.
    Martin L; Vicario C; Castells-García Á; Lakadamyali M; Neguembor MV; Cosma MP
    STAR Protoc; 2021 Dec; 2(4):100865. PubMed ID: 34632419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting single cell interferon-beta production using a fluorescent reporter telomerase-immortalized human fibroblast cell line.
    Hare DN; Subapanditha MK; Mossman KL
    STAR Protoc; 2021 Jun; 2(2):100436. PubMed ID: 33912845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin.
    Zhen CY; Tatavosian R; Huynh TN; Duc HN; Das R; Kokotovic M; Grimm JB; Lavis LD; Lee J; Mejia FJ; Li Y; Yao T; Ren X
    Elife; 2016 Oct; 5():. PubMed ID: 27723458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-Surveillance: Tracking Individual Molecules in a Sea of Chromatin.
    Melters DP; Dalal Y
    J Mol Biol; 2021 Mar; 433(6):166720. PubMed ID: 33221335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super-STORM: Molecular Modeling to Achieve Single-molecule Localization with STORM Microscopy.
    Fan Z; Mikulski Z; McArdle S; Sundd P; Ley K
    STAR Protoc; 2020 Jun; 1(1):100012. PubMed ID: 33111071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplex chromatin interactions with single-molecule precision.
    Zheng M; Tian SZ; Capurso D; Kim M; Maurya R; Lee B; Piecuch E; Gong L; Zhu JJ; Li Z; Wong CH; Ngan CY; Wang P; Ruan X; Wei CL; Ruan Y
    Nature; 2019 Feb; 566(7745):558-562. PubMed ID: 30778195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Imaging of MS2-Tagged hTR in Cajal Bodies: Photobleaching and Photoactivation.
    Smith M; Querido E; Chartrand P; Sfeir A
    STAR Protoc; 2020 Dec; 1(3):100112. PubMed ID: 33377008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of the intact rodent organ of Corti for RNAscope and immunolabeling, confocal microscopy, and quantitative analysis.
    Reijntjes DOJ; Breitzler JL; Persic D; Pyott SJ
    STAR Protoc; 2021 Jun; 2(2):100544. PubMed ID: 34195667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.