BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33377595)

  • 21. Essential Role of the ε Subunit for Reversible Chemo-Mechanical Coupling in F
    Watanabe R; Genda M; Kato-Yamada Y; Noji H
    Biophys J; 2018 Jan; 114(1):178-187. PubMed ID: 29320685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic fusions of globular proteins to the epsilon subunit of the Escherichia coli ATP synthase: Implications for in vivo rotational catalysis and epsilon subunit function.
    Cipriano DJ; Bi Y; Dunn SD
    J Biol Chem; 2002 May; 277(19):16782-90. PubMed ID: 11875079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure of the γ-ε complex of cyanobacterial F
    Murakami S; Kondo K; Katayama S; Hara S; Sunamura EI; Yamashita E; Groth G; Hisabori T
    Biochem J; 2018 Sep; 475(18):2925-2939. PubMed ID: 30054433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. F0F1-ATPase/synthase is geared to the synthesis mode by conformational rearrangement of epsilon subunit in response to proton motive force and ADP/ATP balance.
    Suzuki T; Murakami T; Iino R; Suzuki J; Ono S; Shirakihara Y; Yoshida M
    J Biol Chem; 2003 Nov; 278(47):46840-6. PubMed ID: 12881515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of the epsilon subunit in the Escherichia coli ATP synthase. The C-terminal domain is required for efficient energy coupling.
    Cipriano DJ; Dunn SD
    J Biol Chem; 2006 Jan; 281(1):501-7. PubMed ID: 16267041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The regulator of the F1 motor: inhibition of rotation of cyanobacterial F1-ATPase by the epsilon subunit.
    Konno H; Murakami-Fuse T; Fujii F; Koyama F; Ueoka-Nakanishi H; Pack CG; Kinjo M; Hisabori T
    EMBO J; 2006 Oct; 25(19):4596-604. PubMed ID: 16977308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATP synthase from Escherichia coli: Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols.
    Nakanishi-Matsui M; Sekiya M; Futai M
    Biochim Biophys Acta; 2016 Feb; 1857(2):129-140. PubMed ID: 26589785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The N-termini of the alpha and beta subunits at the top of F1 stabilize the energy-transfer function in the mitochondrial F1Fo ATP synthase.
    Xu T; Candita C; Amoruso G; Papa S
    Eur J Biochem; 1998 Feb; 252(1):155-61. PubMed ID: 9523725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aerobic Growth of Escherichia coli Is Reduced, and ATP Synthesis Is Selectively Inhibited when Five C-terminal Residues Are Deleted from the ϵ Subunit of ATP Synthase.
    Shah NB; Duncan TM
    J Biol Chem; 2015 Aug; 290(34):21032-21041. PubMed ID: 26160173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Knockdown of F1 epsilon subunit decreases mitochondrial content of ATP synthase and leads to accumulation of subunit c.
    Havlícková V; Kaplanová V; Nůsková H; Drahota Z; Houstek J
    Biochim Biophys Acta; 2010; 1797(6-7):1124-9. PubMed ID: 20026007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Unique C-Terminal Extension of Mycobacterial F-ATP Synthase Subunit α Is the Major Contributor to Its Latent ATP Hydrolysis Activity.
    Wong CF; Grüber G
    Antimicrob Agents Chemother; 2020 Nov; 64(12):. PubMed ID: 32988828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ATP synthase complex from beef heart mitochondria. Role of the thiol group of the 25-kDa subunit of Fo in the coupling mechanism between Fo and F1.
    Lippe G; Dabbeni Sala F; Sorgato MC
    J Biol Chem; 1988 Dec; 263(35):18627-34. PubMed ID: 2904433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Irregular activity oscillations of rotary molecular motor. A simple kinetic model of F1-ATPase].
    Gol'dshteĭn BN; Aksirov AM; Zakrzhevskaia DT
    Mol Biol (Mosk); 2012; 46(5):792-8. PubMed ID: 23156679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subunits coupling H+ transport and ATP synthesis in the Escherichia coli ATP synthase. Cys-Cys cross-linking of F1 subunit epsilon to the polar loop of F0 subunit c.
    Zhang Y; Fillingame RH
    J Biol Chem; 1995 Oct; 270(41):24609-14. PubMed ID: 7592682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The N-terminal region of the ϵ subunit from cyanobacterial ATP synthase alone can inhibit ATPase activity.
    Inabe K; Kondo K; Yoshida K; Wakabayashi KI; Hisabori T
    J Biol Chem; 2019 Jun; 294(26):10094-10103. PubMed ID: 31068416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Significance of the epsilon subunit in the thiol modulation of chloroplast ATP synthase.
    Konno H; Suzuki T; Bald D; Yoshida M; Hisabori T
    Biochem Biophys Res Commun; 2004 May; 318(1):17-24. PubMed ID: 15110747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and functional analysis of the intrinsic inhibitor subunit epsilon of F1-ATPase from photosynthetic organisms.
    Yagi H; Konno H; Murakami-Fuse T; Isu A; Oroguchi T; Akutsu H; Ikeguchi M; Hisabori T
    Biochem J; 2009 Dec; 425(1):85-94. PubMed ID: 19785575
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structural features of Acetobacterium woodii F-ATP synthase reveal the importance of the unique subunit γ-loop in Na
    Bogdanović N; Trifunović D; Sielaff H; Westphal L; Bhushan S; Müller V; Grüber G
    FEBS J; 2019 May; 286(10):1894-1907. PubMed ID: 30791207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ζ subunit of the F1FO-ATP synthase of α-proteobacteria controls rotation of the nanomotor with a different structure.
    Zarco-Zavala M; Morales-Ríos E; Mendoza-Hernández G; Ramírez-Silva L; Pérez-Hernández G; García-Trejo JJ
    FASEB J; 2014 May; 28(5):2146-57. PubMed ID: 24522203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanistic insights into coupling of ion transport to ATP synthesis.
    Nath S
    Biophys Chem; 2018 Oct; 241():20-26. PubMed ID: 30081239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.