These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 33377612)
41. Performance of Topological Perception in the Myopic Population. Sun Y; Li F; Li H; Song Y; Wang W; Zhou R; Xiong J; He W; Peng Y; Liu Y; Wang L; Huang Y; Zhang X Curr Eye Res; 2020 Nov; 45(11):1458-1465. PubMed ID: 32338072 [No Abstract] [Full Text] [Related]
42. The types and severity of high myopic maculopathy in Chinese patients. Chen H; Wen F; Li H; Zuo C; Zhang X; Huang S; Luo G Ophthalmic Physiol Opt; 2012 Jan; 32(1):60-7. PubMed ID: 21762440 [TBL] [Abstract][Full Text] [Related]
43. Patterns of Fundus Autofluorescence in Eyes with Myopic Atrophy Maculopathy: A Consecutive Case Series Study. Li J; Zhao X; Chen S; Liu B; Li Y; Lian P; Wang Y; Yu X; Lu L Curr Eye Res; 2021 Jul; 46(7):1056-1060. PubMed ID: 33249926 [No Abstract] [Full Text] [Related]
44. The Relationship between Progression in Axial Length/Corneal Radius of Curvature Ratio and Spherical Equivalent Refractive Error in Myopia. Jong M; Sankaridurg P; Naduvilath TJ; Li W; He M Optom Vis Sci; 2018 Oct; 95(10):921-929. PubMed ID: 30247237 [TBL] [Abstract][Full Text] [Related]
45. Crystalline Lens Power and Associated Factors in Highly Myopic Children and Adolescents Aged 4 to 19 Years. Cheng T; Deng J; Xiong S; Yu S; Zhang B; Wang J; Gong W; Zhao H; Luan M; Zhu M; Zhu J; Zou H; Xu X; He X; Xu X Am J Ophthalmol; 2021 Mar; 223():169-177. PubMed ID: 32681906 [TBL] [Abstract][Full Text] [Related]
46. Quantification of Fundus Tessellation Reflects Early Myopic Maculopathy in a Large-Scale Population of Children and Adolescents. Gong W; Wang J; Deng J; Chen J; Zhu Z; Seth I; Zhang B; Wang X; Yang J; Du L; Xu X; He X Transl Vis Sci Technol; 2024 Jun; 13(6):22. PubMed ID: 38922627 [TBL] [Abstract][Full Text] [Related]
47. Progression of Myopic Maculopathy in Highly Myopic Chinese Eyes. Li Z; Liu R; Xiao O; Guo X; Wang D; Zhang J; Ha JJ; Lee JTL; Lee P; Jong M; Sankaridurg P; Ohno-Matsui K; He M Invest Ophthalmol Vis Sci; 2019 Mar; 60(4):1096-1104. PubMed ID: 30901386 [TBL] [Abstract][Full Text] [Related]
48. Prevalence and risk factors of myopic maculopathy in rural southern China: the Yangxi Eye Study. Li Z; Liu R; Jin G; Ha J; Ding X; Xiao W; Xu X; An L; Zhao J; He M Br J Ophthalmol; 2019 Dec; 103(12):1797-1802. PubMed ID: 30770357 [TBL] [Abstract][Full Text] [Related]
49. Risk factors for myopia progression in second-grade primary school children in Taipei: a population-based cohort study. Hsu CC; Huang N; Lin PY; Fang SY; Tsai DC; Chen SY; Tsai CY; Woung LC; Chiou SH; Liu CJ Br J Ophthalmol; 2017 Dec; 101(12):1611-1617. PubMed ID: 28315834 [TBL] [Abstract][Full Text] [Related]
50. Prevalence and predictors of myopic macular degeneration among Asian adults: pooled analysis from the Asian Eye Epidemiology Consortium. Wong YL; Zhu X; Tham YC; Yam JCS; Zhang K; Sabanayagam C; Lanca C; Zhang X; Han SY; He W; Susvar P; Trivedi M; Yuan N; Lambat S; Raman R; Song SJ; Wang YX; Bikbov MM; Nangia V; Chen LJ; Wong TY; Lamoureux EL; Pang CP; Cheng CY; Lu Y; Jonas JB; Saw SM; Br J Ophthalmol; 2021 Aug; 105(8):1140-1148. PubMed ID: 32878826 [TBL] [Abstract][Full Text] [Related]
51. Acquired myopia in Vogt-Koyanagi-Harada disease. Takahashi H; Takase H; Terada Y; Mochizuki M; Ohno-Matsui K Int Ophthalmol; 2019 Mar; 39(3):521-531. PubMed ID: 29397539 [TBL] [Abstract][Full Text] [Related]
52. Optic disc change with incipient myopia of childhood. Kim TW; Kim M; Weinreb RN; Woo SJ; Park KH; Hwang JM Ophthalmology; 2012 Jan; 119(1):21-6.e1-3. PubMed ID: 21978594 [TBL] [Abstract][Full Text] [Related]
53. Incidence of and Factors Associated With Myopia and High Myopia in Chinese Children, Based on Refraction Without Cycloplegia. Wang SK; Guo Y; Liao C; Chen Y; Su G; Zhang G; Zhang L; He M JAMA Ophthalmol; 2018 Sep; 136(9):1017-1024. PubMed ID: 29978185 [TBL] [Abstract][Full Text] [Related]
54. Optical 'dampening' of the refractive error to axial length ratio: implications for outcome measures in myopia control studies. Cruickshank FE; Logan NS Ophthalmic Physiol Opt; 2018 May; 38(3):290-297. PubMed ID: 29691929 [TBL] [Abstract][Full Text] [Related]
55. Effect of myopic anisometropia on anterior and posterior ocular segment parameters. Tekin K; Cankurtaran V; Inanc M; Sekeroglu MA; Yilmazbas P Int Ophthalmol; 2017 Apr; 37(2):377-384. PubMed ID: 27262559 [TBL] [Abstract][Full Text] [Related]
56. Longitudinal Changes in Disc and Retinal Lesions Among Highly Myopic Adolescents in Singapore Over a 10-Year Period. Wong YL; Ding Y; Sabanayagam C; Wong CW; Verkicharla P; Ohno-Matsui K; Tan D; Yeo AC; Hoang QV; Lamoureux E; Saw SM Eye Contact Lens; 2018 Sep; 44(5):286-291. PubMed ID: 29369230 [TBL] [Abstract][Full Text] [Related]
57. Comparison of anterior segment parameters and axial lengths of myopic, emmetropic, and hyperopic children. Dogan M; Elgin U; Sen E; Tekin K; Yilmazbas P Int Ophthalmol; 2019 Feb; 39(2):335-340. PubMed ID: 29285706 [TBL] [Abstract][Full Text] [Related]
58. Daily Low-Level Red Light for Spherical Equivalent Error and Axial Length in Children With Myopia: A Randomized Clinical Trial. Cao K; Tian L; Ma DL; Zhao SQ; Li A; Jin ZB; Jie Y JAMA Ophthalmol; 2024 Jun; 142(6):560-567. PubMed ID: 38662345 [TBL] [Abstract][Full Text] [Related]
59. Longitudinal analysis of axial length growth in a German cohort of healthy children and adolescents. Truckenbrod C; Meigen C; Brandt M; Vogel M; Sanz Diez P; Wahl S; Jurkutat A; Kiess W Ophthalmic Physiol Opt; 2021 May; 41(3):532-540. PubMed ID: 33792977 [TBL] [Abstract][Full Text] [Related]