These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
3. Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach. Gao T; Gillispie GJ; Copus JS; Pr AK; Seol YJ; Atala A; Yoo JJ; Lee SJ Biofabrication; 2018 Jun; 10(3):034106. PubMed ID: 29923501 [TBL] [Abstract][Full Text] [Related]
4. Machine learning-based design strategy for 3D printable bioink: elastic modulus and yield stress determine printability. Lee J; Oh SJ; An SH; Kim WD; Kim SH Biofabrication; 2020 May; 12(3):035018. PubMed ID: 32252038 [TBL] [Abstract][Full Text] [Related]
5. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting. Kiyotake EA; Douglas AW; Thomas EE; Nimmo SL; Detamore MS Acta Biomater; 2019 Sep; 95():176-187. PubMed ID: 30669003 [TBL] [Abstract][Full Text] [Related]
7. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering. Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765 [TBL] [Abstract][Full Text] [Related]
8. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034 [TBL] [Abstract][Full Text] [Related]
9. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
10. GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis. Stratesteffen H; Köpf M; Kreimendahl F; Blaeser A; Jockenhoevel S; Fischer H Biofabrication; 2017 Sep; 9(4):045002. PubMed ID: 28795951 [TBL] [Abstract][Full Text] [Related]
11. A systematic approach to improve printability and cell viability of methylcellulose-based bioinks. Jergitsch M; Alluè-Mengual Z; Perez RA; Mateos-Timoneda MA Int J Biol Macromol; 2023 Dec; 253(Pt 7):127461. PubMed ID: 37852401 [TBL] [Abstract][Full Text] [Related]
12. Effect of Homogenized Callus Tissue on the Rheological and Mechanical Properties of 3D-Printed Food. Dushina E; Popov S; Zlobin A; Martinson E; Paderin N; Vityazev F; Belova K; Litvinets S Gels; 2024 Jan; 10(1):. PubMed ID: 38247765 [TBL] [Abstract][Full Text] [Related]
13. Double-Network Polyurethane-Gelatin Hydrogel with Tunable Modulus for High-Resolution 3D Bioprinting. Hsieh CT; Hsu SH ACS Appl Mater Interfaces; 2019 Sep; 11(36):32746-32757. PubMed ID: 31407899 [TBL] [Abstract][Full Text] [Related]
14. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications. Karimi A; Navidbakhsh M Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278 [TBL] [Abstract][Full Text] [Related]
15. 3D Printed Hydrogel-Based Sensors for Quantifying UV Exposure. Finny AS; Jiang C; Andreescu S ACS Appl Mater Interfaces; 2020 Sep; 12(39):43911-43920. PubMed ID: 32870644 [TBL] [Abstract][Full Text] [Related]
16. Design of a Waterborne Polyurethane-Urea Ink for Direct Ink Writing 3D Printing. Vadillo J; Larraza I; Calvo-Correas T; Gabilondo N; Derail C; Eceiza A Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198656 [TBL] [Abstract][Full Text] [Related]
17. Investigation on characteristics of 3D printing using Nostoc sphaeroides biomass. An YJ; Guo CF; Zhang M; Zhong ZP J Sci Food Agric; 2019 Jan; 99(2):639-646. PubMed ID: 29951991 [TBL] [Abstract][Full Text] [Related]
19. Decellularized extracellular matrix-based bio-ink with enhanced 3D printability and mechanical properties. Kim MK; Jeong W; Lee SM; Kim JB; Jin S; Kang HW Biofabrication; 2020 Jan; 12(2):025003. PubMed ID: 31783385 [TBL] [Abstract][Full Text] [Related]
20. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]