These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Interaction of chlorpromazine and imipramine with model membranes. Ahyayauch H; Bennouna M Therapie; 1999; 54(5):585-8. PubMed ID: 10667094 [TBL] [Abstract][Full Text] [Related]
6. The displacement of phenothiazines from phospholipid binding sites by cholesterol. Forrest BJ; Mattai J Biochem Biophys Res Commun; 1983 Aug; 114(3):1001-5. PubMed ID: 6615498 [TBL] [Abstract][Full Text] [Related]
7. Drug-induced transmembrane lipid scrambling in erythrocytes and in liposomes requires the presence of polyanionic phospholipids. Moreau C; Sulpice JC; Devaux PF; Zachowski A Mol Membr Biol; 1997; 14(1):5-12. PubMed ID: 9160335 [TBL] [Abstract][Full Text] [Related]
8. Interaction of electrically neutral and cationic forms of imipramine with liposome and erythrocyte membranes. Ahyayauch H; Goñi FM; Bennouna M Int J Pharm; 2004 Jul; 279(1-2):51-8. PubMed ID: 15234794 [TBL] [Abstract][Full Text] [Related]
9. Local anesthesia: the interaction between phospholipids and chlorpromazine, propranolol, and practolol. Lee AG Mol Pharmacol; 1977 May; 13(3):474-87. PubMed ID: 17828 [No Abstract] [Full Text] [Related]
10. Detachment of cytochrome c by cationic drugs from membranes containing acidic phospholipids: comparison of lidocaine, propranolol, and gentamycin. Jutila A; Rytömaa M; Kinnunen PK Mol Pharmacol; 1998 Oct; 54(4):722-32. PubMed ID: 9765516 [TBL] [Abstract][Full Text] [Related]
12. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid. Kuznetsov AS; Dubovskii PV; Vorontsova OV; Feofanov AV; Efremov RG Biochemistry (Mosc); 2014 May; 79(5):459-68. PubMed ID: 24954597 [TBL] [Abstract][Full Text] [Related]
13. Comparison of perturbation effect of propranolol, verapamil, chlorpromazine and carbisocaine on lecithin liposomes and brain total lipid liposomes. An EPR spectroscopy study. Ondrias K; Stasko A; Misík V; Reguli J; Svajdlenka E Chem Biol Interact; 1991; 79(2):197-206. PubMed ID: 1653117 [TBL] [Abstract][Full Text] [Related]
14. Interactions of chlorpromazine and imipramine with artificial membranes investigated by equilibrium dialysis, dual-wavelength photometry, and fluorimetry. Römer J; Bickel MH Biochem Pharmacol; 1979 Mar; 28(6):799-805. PubMed ID: 454478 [No Abstract] [Full Text] [Related]
15. The effect of PS content on the ability of natural membranes to fuse with positively charged liposomes and lipoplexes. Stebelska K; Dubielecka PM; Sikorski AF J Membr Biol; 2005 Aug; 206(3):203-14. PubMed ID: 16456715 [TBL] [Abstract][Full Text] [Related]
16. Partition of chlorpromazine into lipid bilayer membranes: the effect of membrane structure and composition. Luxnat M; Galla HJ Biochim Biophys Acta; 1986 Apr; 856(2):274-82. PubMed ID: 3955043 [TBL] [Abstract][Full Text] [Related]
17. Mechanosensitive ion channels as reporters of bilayer expansion. A theoretical model. Markin VS; Martinac B Biophys J; 1991 Nov; 60(5):1120-7. PubMed ID: 1722115 [TBL] [Abstract][Full Text] [Related]
19. [Mechanism of erythrocyte cryohemolysis, induced by cationic amphipaths: synergism of induction of the "discocyte-stomatocyte III" transition due to chlorpromazine and medium tonicity]. Shpakova NM; Bondarenko VA Ukr Biokhim Zh (1978); 1991; 63(6):83-8. PubMed ID: 1816690 [TBL] [Abstract][Full Text] [Related]
20. C-reactive protein binding specificities: artificial and natural phospholipid bilayers. Narkates AJ; Volanakis JE Ann N Y Acad Sci; 1982; 389():172-82. PubMed ID: 7046574 [No Abstract] [Full Text] [Related] [Next] [New Search]