BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33378259)

  • 1. A Semi-Supervised Deep Rule-Based Approach for Complex Satellite Sensor Image Analysis.
    Gu X; Angelov PP; Zhang C; Atkinson PM
    IEEE Trans Pattern Anal Mach Intell; 2022 May; 44(5):2281-2292. PubMed ID: 33378259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery.
    Kattenborn T; Eichel J; Fassnacht FE
    Sci Rep; 2019 Nov; 9(1):17656. PubMed ID: 31776370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Land cover classification from multi-temporal, multi-spectral remotely sensed imagery using patch-based recurrent neural networks.
    Sharma A; Liu X; Yang X
    Neural Netw; 2018 Sep; 105():346-355. PubMed ID: 29933156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple semi-automatic approach for land cover classification from multispectral remote sensing imagery.
    Jiang D; Huang Y; Zhuang D; Zhu Y; Xu X; Ren H
    PLoS One; 2012; 7(9):e45889. PubMed ID: 23049886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Agricultural Field Segmentation in Satellite Imagery Using TL-ResUNet Architecture.
    Safarov F; Temurbek K; Jamoljon D; Temur O; Chedjou JC; Abdusalomov AB; Cho YI
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling global geometric spatial information for rotation invariant classification of satellite images.
    Ali N; Zafar B; Iqbal MK; Sajid M; Younis MY; Dar SH; Mahmood MT; Lee IH
    PLoS One; 2019; 14(7):e0219833. PubMed ID: 31323065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Use of Deep Learning Methods for Object Height Estimation in High Resolution Satellite Images.
    Glinka S; Bajer J; Wierzbicki D; Karwowska K; Kedzierski M
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Land use classification of open-pit mine based on multi-scale segmentation and random forest model.
    Yu X; Zhang K; Zhang Y
    PLoS One; 2022; 17(2):e0263870. PubMed ID: 35157729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State-of-the-Art Deep Learning Methods for Objects Detection in Remote Sensing Satellite Images.
    Adegun AA; Fonou Dombeu JV; Viriri S; Odindi J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447699
    [No Abstract]   [Full Text] [Related]  

  • 10. Automatic Target Detection from Satellite Imagery Using Machine Learning.
    Tahir A; Munawar HS; Akram J; Adil M; Ali S; Kouzani AZ; Mahmud MAP
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of the NIR Spectral Band for Satellite Images with Convolutional Neural Networks.
    Illarionova S; Shadrin D; Trekin A; Ignatiev V; Oseledets I
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometric feature descriptor and dissimilarity-based registration of remotely sensed imagery.
    Kahaki SMM; Arshad H; Nordin MJ; Ismail W
    PLoS One; 2018; 13(7):e0200676. PubMed ID: 30024921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the abundance and distribution of Adélie penguins using Landsat-7: first steps towards an integrated multi-sensor pipeline for tracking populations at the continental scale.
    Lynch HJ; Schwaller MR
    PLoS One; 2014; 9(11):e113301. PubMed ID: 25412466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study.
    De Roeck E; Van Coillie F; De Wulf R; Soenen K; Charlier J; Vercruysse J; Hantson W; Ducheyne E; Hendrickx G
    Geospat Health; 2014 Dec; 8(3):S671-83. PubMed ID: 25599638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enabling country-scale land cover mapping with meter-resolution satellite imagery.
    Tong XY; Xia GS; Zhu XX
    ISPRS J Photogramm Remote Sens; 2023 Feb; 196():178-196. PubMed ID: 36824311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based object recognition in multispectral satellite imagery for real-time applications.
    Gudžius P; Kurasova O; Darulis V; Filatovas E
    Mach Vis Appl; 2021; 32(4):98. PubMed ID: 34177121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerial-trained deep learning networks for surveying cetaceans from satellite imagery.
    Borowicz A; Le H; Humphries G; Nehls G; Höschle C; Kosarev V; Lynch HJ
    PLoS One; 2019; 14(10):e0212532. PubMed ID: 31574136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-temporal Land Use Land Cover (LULC) change analysis of a dry semi-arid river basin in western India following a robust multi-sensor satellite image calibration strategy.
    Roy A; Inamdar AB
    Heliyon; 2019 Apr; 5(4):e01478. PubMed ID: 31065600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Satellite images and machine learning can identify remote communities to facilitate access to health services.
    Bruzelius E; Le M; Kenny A; Downey J; Danieletto M; Baum A; Doupe P; Silva B; Landrigan PJ; Singh P
    J Am Med Inform Assoc; 2019 Aug; 26(8-9):806-812. PubMed ID: 31411691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data.
    Wang F; Qin Z; Li W; Song C; Karnieli A; Zhao S
    Sensors (Basel); 2014 Dec; 15(1):304-30. PubMed ID: 25609048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.