These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33378259)

  • 61. Habitat heterogeneity captured by 30-m resolution satellite image texture predicts bird richness across the United States.
    Farwell LS; Elsen PR; Razenkova E; Pidgeon AM; Radeloff VC
    Ecol Appl; 2020 Dec; 30(8):e02157. PubMed ID: 32358975
    [TBL] [Abstract][Full Text] [Related]  

  • 62. AI-Based Sensor Information Fusion for Supporting Deep Supervised Learning.
    Leung CK; Braun P; Cuzzocrea A
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30889840
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Self-supervised learning for using overhead imagery as maps in outdoor range sensor localization.
    Tang TY; De Martini D; Wu S; Newman P
    Int J Rob Res; 2021 Dec; 40(12-14):1488-1509. PubMed ID: 34992328
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Comparison of thresholding methods for shoreline extraction from Sentinel-2 and Landsat-8 imagery: Extreme Lake Salda, track of Mars on Earth.
    Karaman M
    J Environ Manage; 2021 Nov; 298():113481. PubMed ID: 34392093
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Vertical artifacts in high-resolution WorldView-2 and WorldView-3 satellite imagery of aquatic systems.
    Coffer MM; Whitman PJ; Schaeffer BA; Hill V; Zimmerman RC; Salls WB; Lebrasse MC; Graybill DD
    Int J Remote Sens; 2022 Mar; 43(4):1199-1225. PubMed ID: 35769209
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion.
    Meraner A; Ebel P; Zhu XX; Schmitt M
    ISPRS J Photogramm Remote Sens; 2020 Aug; 166():333-346. PubMed ID: 32747852
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Predicting road quality using high resolution satellite imagery: A transfer learning approach.
    Brewer E; Lin J; Kemper P; Hennin J; Runfola D
    PLoS One; 2021; 16(7):e0253370. PubMed ID: 34242250
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A theoretical and experimental investigation of graph theoretical measures for land development in satellite imagery.
    Unsalan C; Boyer KL
    IEEE Trans Pattern Anal Mach Intell; 2005 Apr; 27(4):575-89. PubMed ID: 15794162
    [TBL] [Abstract][Full Text] [Related]  

  • 69. On the performance of fusion based planet-scope and Sentinel-2 data for crop classification using inception inspired deep convolutional neural network.
    Minallah N; Tariq M; Aziz N; Khan W; Rehman AU; Belhaouari SB
    PLoS One; 2020; 15(9):e0239746. PubMed ID: 32986785
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A semi-supervised learning method of latent features based on convolutional neural networks for CT metal artifact reduction.
    Shi Z; Wang N; Kong F; Cao H; Cao Q
    Med Phys; 2022 Jun; 49(6):3845-3859. PubMed ID: 35322430
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Monitoring powdery mildew of winter wheat by using moderate resolution multi-temporal satellite imagery.
    Zhang J; Pu R; Yuan L; Wang J; Huang W; Yang G
    PLoS One; 2014; 9(4):e93107. PubMed ID: 24691435
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Using Sentinel-1, Sentinel-2, and Planet satellite data to map field-level tillage practices in smallholder systems.
    Liu Y; Rao P; Zhou W; Singh B; Srivastava AK; Poonia SP; Van Berkel D; Jain M
    PLoS One; 2022; 17(11):e0277425. PubMed ID: 36441682
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Insect-inspired navigation algorithm for an aerial agent using satellite imagery.
    Gaffin DD; Dewar A; Graham P; Philippides A
    PLoS One; 2015; 10(4):e0122077. PubMed ID: 25874764
    [TBL] [Abstract][Full Text] [Related]  

  • 74. EnAET: A Self-Trained Framework for Semi-Supervised and Supervised Learning With Ensemble Transformations.
    Wang X; Kihara D; Luo J; Qi GJ
    IEEE Trans Image Process; 2021; 30():1639-1647. PubMed ID: 33347409
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
    Enguehard J; O'Halloran P; Gholipour A
    IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture.
    Stratoulias D; Tolpekin V; de By RA; Zurita-Milla R; Retsios V; Bijker W; Alfi Hasan M; Vermote E
    Remote Sens (Basel); 2017; 9(10):1048. PubMed ID: 32704488
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mapping intra-urban malaria risk using high resolution satellite imagery: a case study of Dar es Salaam.
    Kabaria CW; Molteni F; Mandike R; Chacky F; Noor AM; Snow RW; Linard C
    Int J Health Geogr; 2016 Jul; 15(1):26. PubMed ID: 27473186
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Single Image Deep Learning Approach to Restoration of Corrupted Landsat-7 Satellite Images.
    Petrovskaia A; Jana R; Oseledets I
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501975
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A hierarchical semi-supervised extreme learning machine method for EEG recognition.
    She Q; Hu B; Luo Z; Nguyen T; Zhang Y
    Med Biol Eng Comput; 2019 Jan; 57(1):147-157. PubMed ID: 30054779
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Optimal segmentation scale selection and evaluation of cultivated land objects based on high-resolution remote sensing images with spectral and texture features.
    Lu H; Liu C; Li N; Fu X; Li L
    Environ Sci Pollut Res Int; 2021 Jun; 28(21):27067-27083. PubMed ID: 33501583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.