These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33378395)

  • 41. Dendritic calcium spikes are tunable triggers of cannabinoid release and short-term synaptic plasticity in cerebellar Purkinje neurons.
    Rancz EA; Häusser M
    J Neurosci; 2006 May; 26(20):5428-37. PubMed ID: 16707795
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Morphogenetic plasticity of neuronal elements in cerebellar glomeruli during deafferentation-induced synaptic reorganization.
    Hámori J; Jakab RL; Takács J
    J Neural Transplant Plast; 1997; 6(1):11-20. PubMed ID: 8959547
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells.
    Soler-Llavina GJ; Sabatini BL
    Nat Neurosci; 2006 Jun; 9(6):798-806. PubMed ID: 16680164
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibitory control of somatodendritic interactions underlying action potentials in neocortical pyramidal neurons in vivo: an intracellular and computational study.
    Paré D; Lang EJ; Destexhe A
    Neuroscience; 1998 May; 84(2):377-402. PubMed ID: 9539211
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons.
    Nolan MF; Malleret G; Dudman JT; Buhl DL; Santoro B; Gibbs E; Vronskaya S; Buzsáki G; Siegelbaum SA; Kandel ER; Morozov A
    Cell; 2004 Nov; 119(5):719-32. PubMed ID: 15550252
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of dendritic tonic GABAergic inhibition regulates excitability and plasticity in CA1 pyramidal neurons.
    Groen MR; Paulsen O; Pérez-Garci E; Nevian T; Wortel J; Dekker MP; Mansvelder HD; van Ooyen A; Meredith RM
    J Neurophysiol; 2014 Jul; 112(2):287-99. PubMed ID: 24760781
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology.
    Kim HG; Connors BW
    J Neurosci; 1993 Dec; 13(12):5301-11. PubMed ID: 8254376
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spike-timing-dependent synaptic plasticity depends on dendritic location.
    Froemke RC; Poo MM; Dan Y
    Nature; 2005 Mar; 434(7030):221-5. PubMed ID: 15759002
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.
    Letzkus JJ; Kampa BM; Stuart GJ
    J Neurosci; 2006 Oct; 26(41):10420-9. PubMed ID: 17035526
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Requirement of dendritic calcium spikes for induction of spike-timing-dependent synaptic plasticity.
    Kampa BM; Letzkus JJ; Stuart GJ
    J Physiol; 2006 Jul; 574(Pt 1):283-90. PubMed ID: 16675489
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two Distinct Sets of Ca
    Ait Ouares K; Filipis L; Tzilivaki A; Poirazi P; Canepari M
    J Neurosci; 2019 Mar; 39(11):1969-1981. PubMed ID: 30630881
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity.
    Hiratani N; Fukai T
    J Neurosci; 2017 Dec; 37(50):12106-12122. PubMed ID: 29089443
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatially distributed dendritic resonance selectively filters synaptic input.
    Laudanski J; Torben-Nielsen B; Segev I; Shamma S
    PLoS Comput Biol; 2014 Aug; 10(8):e1003775. PubMed ID: 25144440
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Apical and basal orthodromic population spikes in hippocampal CA1 in vivo show different origins and patterns of propagation.
    Kloosterman F; Peloquin P; Leung LS
    J Neurophysiol; 2001 Nov; 86(5):2435-44. PubMed ID: 11698533
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional Specialization of Interneuron Dendrites: Identification of Action Potential Initiation Zone in Axonless Olfactory Bulb Granule Cells.
    Pressler RT; Strowbridge BW
    J Neurosci; 2019 Dec; 39(49):9674-9688. PubMed ID: 31662426
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Backpropagation of the delta oscillation and the retinal excitatory postsynaptic potential in a multi-compartment model of thalamocortical neurons.
    Emri Z; Antal K; Tóth TI; Cope DW; Crunelli V
    Neuroscience; 2000; 98(1):111-27. PubMed ID: 10858617
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons.
    Schiller J; Schiller Y; Stuart G; Sakmann B
    J Physiol; 1997 Dec; 505 ( Pt 3)(Pt 3):605-16. PubMed ID: 9457639
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modulation of synaptic plasticity by the coactivation of spatially distinct synaptic inputs in rat hippocampal CA1 apical dendrites.
    Kondo M; Kitajima T; Fujii S; Tsukada M; Aihara T
    Brain Res; 2013 Aug; 1526():1-14. PubMed ID: 23711890
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus.
    Atherton JF; Wokosin DL; Ramanathan S; Bevan MD
    J Physiol; 2008 Dec; 586(23):5679-700. PubMed ID: 18832425
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of asymmetric attenuation of single and paired dendritic inputs on summation of synaptic potentials and initiation of action potentials.
    Fortier PA; Bray C
    Neuroscience; 2013 Apr; 236():195-209. PubMed ID: 23370323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.