BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33378561)

  • 1. Detoxification of fermentable broth with activated biocarbon resulting from pyrolysis of agroforestry residues.
    Martins AF; Villetti MA; Mortari SR; Pedroso GB; Saldanha LF; Rambo MKD
    Water Environ Res; 2021 Aug; 93(8):1445-1454. PubMed ID: 33378561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low temperature conversion of rice husks, eucalyptus sawdust and peach stones for the production of carbon-like adsorbent.
    Martins AF; Cardoso Ade L; Stahl JA; Diniz J
    Bioresour Technol; 2007 Mar; 98(5):1095-100. PubMed ID: 16790341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pyrolysis temperature and hydrothermal activation on structure, physicochemical, thermal and dye adsorption characteristics of the biocarbons.
    Charmas B; Wawrzaszek B; Jedynak K
    Chemphyschem; 2024 Feb; 25(4):e202300773. PubMed ID: 38116918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wodyetia bifurcata biochar for methylene blue removal from aqueous matrix.
    Dos Santos KJL; Dos Santos GES; de Sá ÍMGL; Ide AH; Duarte JLDS; de Carvalho SHV; Soletti JI; Meili L
    Bioresour Technol; 2019 Dec; 293():122093. PubMed ID: 31518818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass activated carbon derived from pine sawdust with steam bursting pretreatment; perfluorooctanoic acid and methylene blue adsorption.
    Yang Y; Cannon FS
    Bioresour Technol; 2022 Jan; 344(Pt A):126161. PubMed ID: 34678453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochars and Activated Biocarbons Prepared via Conventional Pyrolysis and Chemical or Physical Activation of Mugwort Herb as Potential Adsorbents and Renewable Fuels.
    Wiśniewska M; Rejer K; Pietrzak R; Nowicki P
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of activated carbon synthesized by one-stage and two-stage co-pyrolysis from sludge and coconut shell.
    Yang B; Liu Y; Liang Q; Chen M; Ma L; Li L; Liu Q; Tu W; Lan D; Chen Y
    Ecotoxicol Environ Saf; 2019 Apr; 170():722-731. PubMed ID: 30580167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obtaining bio-oil and activated carbon from waste pomegranate peels by pyrolysis.
    Alagöz O; Yılmaz N; Dilek M
    Environ Sci Pollut Res Int; 2023 Nov; 30(54):115037-115049. PubMed ID: 37880403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance of activated biocarbon based on agricultural biomass waste applied for 2,4-D herbicide removing from water: adsorption, kinetic and thermodynamic assessments.
    Brito GM; Roldi LL; Schetino MÂ; Checon Freitas JC; Cabral Coelho ER
    J Environ Sci Health B; 2020; 55(9):767-782. PubMed ID: 32586186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of bifunctional acid on the porosity improvement of biomass-derived activated carbon for methylene blue adsorption.
    Ma P; Wang S; Wang T; Wu J; Xing X; Zhang X
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):30119-30129. PubMed ID: 31418149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave steam activation, an innovative pyrolysis approach to convert waste palm shell into highly microporous activated carbon.
    Yek PNY; Liew RK; Osman MS; Lee CL; Chuah JH; Park YK; Lam SS
    J Environ Manage; 2019 Apr; 236():245-253. PubMed ID: 30735943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of activated carbon from molasses-to-ethanol process waste vinasse and its performance as adsorbent material.
    Kazak O; Ramazan Eker Y; Bingol H; Tor A
    Bioresour Technol; 2017 Oct; 241():1077-1083. PubMed ID: 28651324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZnCl
    Li Y; Li Y; Zang H; Chen L; Meng Z; Li H; Ci L; Du Q; Wang D; Wang C; Li H; Xia Y
    Environ Technol; 2020 Jun; 41(15):2013-2023. PubMed ID: 30500300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium(VI), phenol, and methylene blue dye adsorption.
    Montoya-Suarez S; Colpas-Castillo F; Meza-Fuentes E; Rodríguez-Ruiz J; Fernandez-Maestre R
    Water Sci Technol; 2016; 73(1):21-7. PubMed ID: 26744931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis using natural functionalization of activated carbon from pumpkin peels for decolourization of aqueous methylene blue.
    Rashid J; Tehreem F; Rehman A; Kumar R
    Sci Total Environ; 2019 Jun; 671():369-376. PubMed ID: 30933793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of methylene blue onto betel nut husk-based activated carbon prepared by sodium hydroxide activation process.
    Bardhan M; Novera TM; Tabassum M; Islam MA; Jawad AH; Islam MA
    Water Sci Technol; 2020 Nov; 82(9):1932-1949. PubMed ID: 33201856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation.
    Kwak JH; Islam MS; Wang S; Messele SA; Naeth MA; El-Din MG; Chang SX
    Chemosphere; 2019 Sep; 231():393-404. PubMed ID: 31146131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single step carbonating and activating fir sawdust to activated carbon by recyclable molten carbonates and steam.
    Wei Y; Jia X; Chen Y; Ji J
    Sci Total Environ; 2022 Apr; 818():151778. PubMed ID: 34800455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of waste MDF sawdust charcoal and its reactive dye adsorption characteristics.
    Gan Q; Allen SJ; Matthews R
    Waste Manag; 2004; 24(8):841-8. PubMed ID: 15381236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physically activated charcoal from waste and low-cost biomass: Adsorptive and porosity studies.
    Kukučka MĐ; Kukučka Stojanović NM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Dec; 52(14):1341-1351. PubMed ID: 28952890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.