BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33378561)

  • 21. Activated Biocarbons Obtained from Plant Biomass as Adsorbents of Heavy Metal Ions.
    Wiśniewska M; Marciniak M; Gęca M; Herda K; Pietrzak R; Nowicki P
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079236
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption of methylene blue on biochar microparticles derived from different waste materials.
    Lonappan L; Rouissi T; Das RK; Brar SK; Ramirez AA; Verma M; Surampalli RY; Valero JR
    Waste Manag; 2016 Mar; 49():537-544. PubMed ID: 26818183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.
    Angın D; Altintig E; Köse TE
    Bioresour Technol; 2013 Nov; 148():542-9. PubMed ID: 24080293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue.
    Nasrullah A; Bhat AH; Naeem A; Isa MH; Danish M
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1792-1799. PubMed ID: 29032214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies on characterization and removal of methylene blue with Delonix regia plant litters activated carbon encapsulated nano metal oxide.
    Daniel S; Syed Shabudeen PS; Basker A
    J Environ Biol; 2015 Jul; 36(4):933-40. PubMed ID: 26364472
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative analysis of the characteristics of carbonaceous material obtained via single-staged steam pyrolysis of waste tires.
    Larionov KB; Slyusarskiy KV; Ivanov AA; Mishakov IV; Pak AY; Jankovsky SA; Stoyanovskii VO; Vedyagin AA; Gubin VE
    J Air Waste Manag Assoc; 2022 Feb; 72(2):161-175. PubMed ID: 34846272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitrogen Self-Doped Activated Carbons Derived from Bamboo Shoots as Adsorbent for Methylene Blue Adsorption.
    Mi B; Wang J; Xiang H; Liang F; Yang J; Feng Z; Zhang T; Hu W; Liu X; Liu Z; Fei B
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31434214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry.
    Nautiyal P; Subramanian KA; Dastidar MG
    J Environ Manage; 2016 Nov; 182():187-197. PubMed ID: 27474901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of methylene blue from aqueous solution onto activated carbons developed from eucalyptus bark and Crataegus oxyacantha core.
    Zazouli MA; Azari A; Dehghan S; Salmani Malekkolae R
    Water Sci Technol; 2016 Nov; 74(9):2021-2035. PubMed ID: 27842022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass.
    Hameed BH; Ahmad AA
    J Hazard Mater; 2009 May; 164(2-3):870-5. PubMed ID: 18838221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of methylene blue from aqueous solutions by biochar prepared from the pyrolysis of mixed municipal discarded material.
    Hoslett J; Ghazal H; Mohamad N; Jouhara H
    Sci Total Environ; 2020 Apr; 714():136832. PubMed ID: 32018976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars.
    Mayakaduwa SS; Herath I; Ok YS; Mohan D; Vithanage M
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22755-22763. PubMed ID: 27553000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of binder-less activated char briquettes from pyrolysis of sewage sludge for liquid-phase adsorption of methylene blue.
    Hu M; Deng W; Hu M; Chen G; Zhou P; Zhou Y; Su Y
    J Environ Manage; 2021 Dec; 299():113601. PubMed ID: 34450300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization.
    Peláez-Cid AA; Herrera-González AM; Salazar-Villanueva M; Bautista-Hernández A
    J Environ Manage; 2016 Oct; 181():269-278. PubMed ID: 27372249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation.
    Kula I; Uğurlu M; Karaoğlu H; Celik A
    Bioresour Technol; 2008 Feb; 99(3):492-501. PubMed ID: 17350829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Adsorption of methylene blue from water by the biochars generated from crop residues].
    Xu RK; Zhao AZ; Xiao SC; Yuan JH
    Huan Jing Ke Xue; 2012 Jan; 33(1):142-6. PubMed ID: 22452202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activated carbons from waste biomass: an alternative use for biodiesel production solid residues.
    Nunes AA; Franca AS; Oliveira LS
    Bioresour Technol; 2009 Mar; 100(5):1786-92. PubMed ID: 18996006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-performance porous biochar from the pyrolysis of natural and renewable seaweed (Gelidiella acerosa) and its application for the adsorption of methylene blue.
    Ahmed MJ; Okoye PU; Hummadi EH; Hameed BH
    Bioresour Technol; 2019 Apr; 278():159-164. PubMed ID: 30685620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of Methylene blue and Rhodamine B by using biochar derived from Pongamia glabra seed cover.
    Bordoloi N; Dey MD; Mukhopadhyay R; Kataki R
    Water Sci Technol; 2018 Feb; 77(3-4):638-646. PubMed ID: 29431708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks.
    Lin L; Zhai SR; Xiao ZY; Song Y; An QD; Song XW
    Bioresour Technol; 2013 May; 136():437-43. PubMed ID: 23567714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.