BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 33378680)

  • 1. Pressure-Driven Mitochondrial Transfer Pipeline Generates Mammalian Cells of Desired Genetic Combinations and Fates.
    Patananan AN; Sercel AJ; Wu TH; Ahsan FM; Torres A; Kennedy SAL; Vandiver A; Collier AJ; Mehrabi A; Van Lew J; Zakin L; Rodriguez N; Sixto M; Tadros W; Lazar A; Sieling PA; Nguyen TL; Dawson ER; Braas D; Golovato J; Cisneros L; Vaske C; Plath K; Rabizadeh S; Niazi KR; Chiou PY; Teitell MA
    Cell Rep; 2020 Dec; 33(13):108562. PubMed ID: 33378680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable transplantation of human mitochondrial DNA by high-throughput, pressurized isolated mitochondrial delivery.
    Sercel AJ; Patananan AN; Man T; Wu TH; Yu AK; Guyot GW; Rabizadeh S; Niazi KR; Chiou PY; Teitell MA
    Elife; 2021 Jan; 10():. PubMed ID: 33438576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating stable isolated mitochondrial recipient clones in mammalian cells using MitoPunch mitochondrial transfer.
    Sercel AJ; Napior AJ; Patananan AN; Wu TH; Chiou PY; Teitell MA
    STAR Protoc; 2021 Dec; 2(4):100850. PubMed ID: 34632418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relevance of mitochondrial DNA variants fluctuation during reprogramming and neuronal differentiation of human iPSCs.
    Palombo F; Peron C; Caporali L; Iannielli A; Maresca A; Di Meo I; Fiorini C; Segnali A; Sciacca FL; Rizzo A; Levi S; Suomalainen A; Prigione A; Broccoli V; Carelli V; Tiranti V
    Stem Cell Reports; 2021 Aug; 16(8):1953-1967. PubMed ID: 34329598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable retention of chloramphenicol-resistant mtDNA to rescue metabolically impaired cells.
    Dawson ER; Patananan AN; Sercel AJ; Teitell MA
    Sci Rep; 2020 Aug; 10(1):14328. PubMed ID: 32868785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation and Characterization of Induced Pluripotent Stem Cells from Patients with mtDNA Mutations.
    Hämäläinen RH; Suomalainen A
    Methods Mol Biol; 2016; 1353():65-75. PubMed ID: 26187202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Glycolytic Activity Enhances Stem Cell Reprogramming of Fahd1-KO Mouse Embryonic Fibroblasts.
    Salti A; Etemad S; Cubero MS; Albertini E; Kovacs-Szalka B; Holzknecht M; Cappuccio E; Cavinato M; Edenhofer F; Jansen Dürr P
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic rescue in pluripotent cells from patients with mtDNA disease.
    Ma H; Folmes CD; Wu J; Morey R; Mora-Castilla S; Ocampo A; Ma L; Poulton J; Wang X; Ahmed R; Kang E; Lee Y; Hayama T; Li Y; Van Dyken C; Gutierrez NM; Tippner-Hedges R; Koski A; Mitalipov N; Amato P; Wolf DP; Huang T; Terzic A; Laurent LC; Izpisua Belmonte JC; Mitalipov S
    Nature; 2015 Aug; 524(7564):234-8. PubMed ID: 26176921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mRNA Reprogramming of T8993G Leigh's Syndrome Fibroblast Cells to Create Induced Pluripotent Stem Cell Models for Mitochondrial Disorders.
    Grace HE; Galdun P; Lesnefsky EJ; West FD; Iyer S
    Stem Cells Dev; 2019 Jul; 28(13):846-859. PubMed ID: 31017045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible mitochondrial DNA accumulation in nuclei of pluripotent stem cells.
    Schneider JS; Cheng X; Zhao Q; Underbayev C; Gonzalez JP; Raveche ES; Fraidenraich D; Ivessa AS
    Stem Cells Dev; 2014 Nov; 23(22):2712-9. PubMed ID: 24964274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial resetting and metabolic reprogramming in induced pluripotent stem cells and mitochondrial disease modeling.
    Hsu YC; Chen CT; Wei YH
    Biochim Biophys Acta; 2016 Apr; 1860(4):686-93. PubMed ID: 26779594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolome Profiling of Partial and Fully Reprogrammed Induced Pluripotent Stem Cells.
    Park SJ; Lee SA; Prasain N; Bae D; Kang H; Ha T; Kim JS; Hong KS; Mantel C; Moon SH; Broxmeyer HE; Lee MR
    Stem Cells Dev; 2017 May; 26(10):734-742. PubMed ID: 28346802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatic cells with a heavy mitochondrial DNA mutational load render induced pluripotent stem cells with distinct differentiation defects.
    Wahlestedt M; Ameur A; Moraghebi R; Norddahl GL; Sten G; Woods NB; Bryder D
    Stem Cells; 2014 May; 32(5):1173-82. PubMed ID: 24446123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of nuclear reprogramming on mitochondrial DNA replication.
    Kelly RD; Sumer H; McKenzie M; Facucho-Oliveira J; Trounce IA; Verma PJ; St John JC
    Stem Cell Rev Rep; 2013 Feb; 9(1):1-15. PubMed ID: 21994000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS.
    Folmes CD; Martinez-Fernandez A; Perales-Clemente E; Li X; McDonald A; Oglesbee D; Hrstka SC; Perez-Terzic C; Terzic A; Nelson TJ
    Stem Cells; 2013 Jul; 31(7):1298-308. PubMed ID: 23553816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial genome mutations in mesenchymal stem cells derived from human dental induced pluripotent stem cells.
    Park J; Lee Y; Shin J; Lee HJ; Son YB; Park BW; Kim D; Rho GJ; Kang E
    BMB Rep; 2019 Dec; 52(12):689-694. PubMed ID: 31234953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of mitochondrial respiratory defects on reprogramming to human induced pluripotent stem cells.
    Hung SS; Van Bergen NJ; Jackson S; Liang H; Mackey DA; Hernández D; Lim SY; Hewitt AW; Trounce I; Pébay A; Wong RC
    Aging (Albany NY); 2016 May; 8(5):945-57. PubMed ID: 27127184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic potential of somatic cell nuclear transfer for degenerative disease caused by mitochondrial DNA mutations.
    Greggains GD; Lister LM; Tuppen HA; Zhang Q; Needham LH; Prathalingam N; Hyslop LA; Craven L; Polanski Z; Murdoch AP; Turnbull DM; Herbert M
    Sci Rep; 2014 Jan; 4():3844. PubMed ID: 24457623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An automated, high-throughput methodology optimized for quantitative cell-free mitochondrial and nuclear DNA isolation from plasma.
    Ware SA; Desai N; Lopez M; Leach D; Zhang Y; Giordano L; Nouraie M; Picard M; Kaufman BA
    J Biol Chem; 2020 Nov; 295(46):15677-15691. PubMed ID: 32900851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects.
    Hashizume O; Ohnishi S; Mito T; Shimizu A; Ishikawa K; Nakada K; Soda M; Mano H; Togayachi S; Miyoshi H; Okita K; Hayashi J
    Sci Rep; 2015 May; 5():10434. PubMed ID: 26000717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.