These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33378726)

  • 1. Ultrasonically tuned surface tension and nano-film formation of aqueous ZnO nanofluids.
    Begum Elcioglu E; Murshed SMS
    Ultrason Sonochem; 2021 Apr; 72():105424. PubMed ID: 33378726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Investigation of Thermal Conductivity of Water-Based Fe
    Barai DP; Bhanvase BA; Żyła G
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal and Fluid Dynamics Performance of MWCNT-Water Nanofluid Based on Thermophysical Properties: An Experimental and Theoretical Study.
    Lyu Z; Asadi A; Alarifi IM; Ali V; Foong LK
    Sci Rep; 2020 Mar; 10(1):5185. PubMed ID: 32198454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review.
    Asadi A; Pourfattah F; Miklós Szilágyi I; Afrand M; Żyła G; Seon Ahn H; Wongwises S; Minh Nguyen H; Arabkoohsar A; Mahian O
    Ultrason Sonochem; 2019 Nov; 58():104701. PubMed ID: 31450312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: statics analysis and experiments.
    Kondiparty K; Nikolov A; Wu S; Wasan D
    Langmuir; 2011 Apr; 27(7):3324-35. PubMed ID: 21395240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of ultrasonication time and surfactants on stability and optical properties of CuO, Fe
    Sajid MU; Bicer Y
    Ultrason Sonochem; 2022 Aug; 88():106079. PubMed ID: 35763944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nanoparticle on rheological properties of surfactant-based nanofluid for effective carbon utilization: capturing and storage prospects.
    Kumar RS; Goswami R; Chaturvedi KR; Sharma T
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):53578-53593. PubMed ID: 34036498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of ultrasonication period for better dispersion and stability of TiO
    Mahbubul IM; Elcioglu EB; Saidur R; Amalina MA
    Ultrason Sonochem; 2017 Jul; 37():360-367. PubMed ID: 28427644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective ultrasonication process for better colloidal dispersion of nanofluid.
    Mahbubul IM; Saidur R; Amalina MA; Elcioglu EB; Okutucu-Ozyurt T
    Ultrason Sonochem; 2015 Sep; 26():361-369. PubMed ID: 25616639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat Transfer and Fluids Properties of Nanofluids.
    Murshed SMS
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonication an intensifying tool for preparation of stable nanofluids and study the time influence on distinct properties of graphene nanofluids - A systematic overview.
    Sandhya M; Ramasamy D; Sudhakar K; Kadirgama K; Harun WSW
    Ultrason Sonochem; 2021 May; 73():105479. PubMed ID: 33578278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ultrasonication time on stability, dynamic viscosity, and pumping power management of MWCNT-water nanofluid: an experimental study.
    Asadi A; Alarifi IM
    Sci Rep; 2020 Sep; 10(1):15182. PubMed ID: 32939001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions.
    Ruan B; Jacobi AM
    Nanoscale Res Lett; 2012 Feb; 7(1):127. PubMed ID: 22333487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustics and thermal studies of conventional heat transfer fluids mixed with ZnO nano flakes at different temperatures.
    Kamila S; Venu Gopal VR
    Heliyon; 2019 Sep; 5(9):e02445. PubMed ID: 31535049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Research and Development on the Natural Convection of Suspensions of Nanoparticles-A Comprehensive Review.
    Murshed SMS; Sharifpur M; Giwa S; Meyer JP
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32948081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of thermophysical property of hybrid nanofluids for solar Thermal applications: Implementation of novel Optimizable Gaussian Process regression (O-GPR) approach for Viscosity prediction.
    Adun H; Wole-Osho I; Okonkwo EC; Ruwa T; Agwa T; Onochie K; Ukwu H; Bamisile O; Dagbasi M
    Neural Comput Appl; 2022; 34(13):11233-11254. PubMed ID: 35291505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger.
    Kwon YH; Kim D; Li CG; Lee JK; Hong DS; Lee JG; Lee SH; Cho YH; Kim SH
    J Nanosci Nanotechnol; 2011 Jul; 11(7):5769-74. PubMed ID: 22121605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermophysical properties of nanofluids.
    Rudyak VY; Minakov AV
    Eur Phys J E Soft Matter; 2018 Jan; 41(1):15. PubMed ID: 29380078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids.
    Agromayor R; Cabaleiro D; Pardinas AA; Vallejo JP; Fernandez-Seara J; Lugo L
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Hybrid Nanofluids Concentration and Swirling Flow on Jet Impingement Cooling.
    Jen Wai O; Gunnasegaran P; Hasini H
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.