These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33378726)

  • 21. Wetting behavior of multi-walled carbon nanotube nanofluids.
    Karthikeyan A; Coulombe S; Kietzig AM
    Nanotechnology; 2017 Mar; 28(10):105706. PubMed ID: 28106004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental Study of Halloysite Nanofluids in Pool Boiling Heat Transfer.
    Le Ba T; Baqer A; Saad Kamel M; Gróf G; Odhiambo VO; Wongwises S; Ferenc L; Szilágyi IM
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35163994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Boiling heat transfer and droplet spreading of nanofluids.
    Murshed SM; de Castro CA
    Recent Pat Nanotechnol; 2013 Nov; 7(3):216-23. PubMed ID: 24330044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Ag nanoparticle addition and ultrasonic treatment on a stable TiO2 nanofluid.
    Chakraborty S; Mukherjee J; Manna M; Ghosh P; Das S; Denys MB
    Ultrason Sonochem; 2012 Sep; 19(5):1044-50. PubMed ID: 22421063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis.
    Sergis A; Hardalupas Y
    Nanoscale Res Lett; 2011 May; 6(1):391. PubMed ID: 21711932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Nanoparticle Size and Concentration on Pool Boiling Heat Transfer with TiO
    Hadžić A; Može M; Arhar K; Zupančič M; Golobič I
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pool Boiling Amelioration by Aqueous Dispersion of Silica Nanoparticles.
    Mukherjee S; Ali N; Aljuwayhel NF; Mishra PC; Sen S; Chaudhuri P
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of ultrasonication power and time on the dispersion stability of few-layer graphene nanofluids under the constant ultrasonic energy consumption condition.
    Zheng N; Wang L; Sun Z
    Ultrason Sonochem; 2021 Dec; 80():105816. PubMed ID: 34739930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal Performance of Hybrid-Inspired Coolant for Radiator Application.
    Benedict F; Kumar A; Kadirgama K; Mohammed HA; Ramasamy D; Samykano M; Saidur R
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32498258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surfactant-Augmented Functional Silica Nanoparticle Based Nanofluid for Enhanced Oil Recovery at High Temperature and Salinity.
    Zhou Y; Wu X; Zhong X; Sun W; Pu H; Zhao JX
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45763-45775. PubMed ID: 31729855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Boiling heat transfer of nanofluids--special emphasis on critical heat flux.
    Kim SJ; Kim H
    Recent Pat Nanotechnol; 2013 Nov; 7(3):184-97. PubMed ID: 24330041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel WS
    Martínez-Merino P; Midgley SD; Martín EI; Estellé P; Alcántara R; Sánchez-Coronilla A; Grau-Crespo R; Navas J
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5793-5804. PubMed ID: 31942792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanofluid two-phase flow and thermal physics: a new research frontier of nanotechnology and its challenges.
    Cheng L; Bandarra Filho EP; Thome JR
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3315-32. PubMed ID: 19051876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pool Boiling of Nanofluids on Biphilic Surfaces: An Experimental and Numerical Study.
    Freitas E; Pontes P; Cautela R; Bahadur V; Miranda J; Ribeiro APC; Souza RR; Oliveira JD; Copetti JB; Lima R; Pereira JE; Moreira ALN; Moita AS
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33430503
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment.
    Ramesh G; Prabhu NK
    Nanoscale Res Lett; 2011 Apr; 6(1):334. PubMed ID: 21711877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is metal nanofluid reliable as heat carrier?
    Nine MJ; Chung H; Tanshen MR; Osman NA; Jeong H
    J Hazard Mater; 2014 May; 273():183-91. PubMed ID: 24735805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extensive Analysis on the Thermoelectric Properties of Aqueous Zn-Doped Nickel Ferrite Nanofluids for Magnetically Tuned Thermoelectric Applications.
    Kulandaivel A; Jawaharlal H
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35642333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The study of electrical conductivity and diffusion behavior of water-based and ferro/ferricyanide-electrolyte-based alumina nanofluids.
    Liu C; Lee H; Chang YH; Feng SP
    J Colloid Interface Sci; 2016 May; 469():17-24. PubMed ID: 26866885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative stability analyses of multiwall carbon nanotube nanofluids following water/ice phase change cycling.
    Ivall J; Langlois-Rahme G; Coulombe S; Servio P
    Nanotechnology; 2017 Feb; 28(5):055702. PubMed ID: 28029101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic spreading of nanofluids on solids. Part I: experimental.
    Kondiparty K; Nikolov AD; Wasan D; Liu KL
    Langmuir; 2012 Oct; 28(41):14618-23. PubMed ID: 22966990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.