These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33378767)

  • 1. A deep learning approach for filtering structural variants in short read sequencing data.
    Liu Y; Huang Y; Wang G; Wang Y
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33378767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated filtering of genome-wide large deletions through an ensemble deep learning framework.
    Hu Y; Mangal S; Zhang L; Zhou X
    Methods; 2022 Oct; 206():77-86. PubMed ID: 36038049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NPSV-deep: a deep learning method for genotyping structural variants in short read genome sequencing data.
    Linderman MD; Wallace J; van der Heyde A; Wieman E; Brey D; Shi Y; Hansen P; Shamsi Z; Liu J; Gelb BD; Bashir A
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38444093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CSV-Filter: a deep learning-based comprehensive structural variant filtering method for both short and long reads.
    Xia Z; Xiang W; Wang Q; Li X; Li Y; Gao J; Tang T; Yang C; Cui Y
    Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39240375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. tarSVM: Improving the accuracy of variant calls derived from microfluidic PCR-based targeted next generation sequencing using a support vector machine.
    Gillies CE; Otto EA; Vega-Warner V; Robertson CC; Sanna-Cherchi S; Gharavi A; Crawford B; Bhimma R; Winkler C; ; ; Kang HM; Sampson MG
    BMC Bioinformatics; 2016 Jun; 17(1):233. PubMed ID: 27287006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cnnLSV: detecting structural variants by encoding long-read alignment information and convolutional neural network.
    Ma H; Zhong C; Chen D; He H; Yang F
    BMC Bioinformatics; 2023 Mar; 24(1):119. PubMed ID: 36977976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SV2: accurate structural variation genotyping and de novo mutation detection from whole genomes.
    Antaki D; Brandler WM; Sebat J
    Bioinformatics; 2018 May; 34(10):1774-1777. PubMed ID: 29300834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A universal SNP and small-indel variant caller using deep neural networks.
    Poplin R; Chang PC; Alexander D; Schwartz S; Colthurst T; Ku A; Newburger D; Dijamco J; Nguyen N; Afshar PT; Gross SS; Dorfman L; McLean CY; DePristo MA
    Nat Biotechnol; 2018 Nov; 36(10):983-987. PubMed ID: 30247488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BreakNet: detecting deletions using long reads and a deep learning approach.
    Luo J; Ding H; Shen J; Zhai H; Wu Z; Yan C; Luo H
    BMC Bioinformatics; 2021 Dec; 22(1):577. PubMed ID: 34856923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing.
    Edge P; Bansal V
    Nat Commun; 2019 Oct; 10(1):4660. PubMed ID: 31604920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lean and deep models for more accurate filtering of SNP and INDEL variant calls.
    Friedman S; Gauthier L; Farjoun Y; Banks E
    Bioinformatics; 2020 Apr; 36(7):2060-2067. PubMed ID: 31830260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MAMnet: detecting and genotyping deletions and insertions based on long reads and a deep learning approach.
    Ding H; Luo J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35580841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing breakpoint resolution with deep segmentation model: A general refinement method for read-depth based structural variant callers.
    Zhang YZ; Imoto S; Miyano S; Yamaguchi R
    PLoS Comput Biol; 2021 Oct; 17(10):e1009186. PubMed ID: 34634042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cue: a deep-learning framework for structural variant discovery and genotyping.
    Popic V; Rohlicek C; Cunial F; Hajirasouliha I; Meleshko D; Garimella K; Maheshwari A
    Nat Methods; 2023 Apr; 20(4):559-568. PubMed ID: 36959322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using genotype array data to compare multi- and single-sample variant calls and improve variant call sets from deep coverage whole-genome sequencing data.
    Shringarpure SS; Mathias RA; Hernandez RD; O'Connor TD; Szpiech ZA; Torres R; De La Vega FM; Bustamante CD; Barnes KC; Taub MA;
    Bioinformatics; 2017 Apr; 33(8):1147-1153. PubMed ID: 28035032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MoMI-G: modular multi-scale integrated genome graph browser.
    Yokoyama TT; Sakamoto Y; Seki M; Suzuki Y; Kasahara M
    BMC Bioinformatics; 2019 Nov; 20(1):548. PubMed ID: 31690272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SVIM: structural variant identification using mapped long reads.
    Heller D; Vingron M
    Bioinformatics; 2019 Sep; 35(17):2907-2915. PubMed ID: 30668829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HAT: de novo variant calling for highly accurate short-read and long-read sequencing data.
    Ng JK; Turner TN
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38175776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HELLO: improved neural network architectures and methodologies for small variant calling.
    Ramachandran A; Lumetta SS; Klee EW; Chen D
    BMC Bioinformatics; 2021 Aug; 22(1):404. PubMed ID: 34391391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving variant calling using population data and deep learning.
    Chen NC; Kolesnikov A; Goel S; Yun T; Chang PC; Carroll A
    BMC Bioinformatics; 2023 May; 24(1):197. PubMed ID: 37173615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.