These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33378767)

  • 21. A multilocus approach for accurate variant calling in low-copy repeats using whole-genome sequencing.
    Prodanov T; Bansal V
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i279-i287. PubMed ID: 37387146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. VEF: a variant filtering tool based on ensemble methods.
    Zhang C; Ochoa I
    Bioinformatics; 2020 Apr; 36(8):2328-2336. PubMed ID: 31873730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive evaluation and characterisation of short read general-purpose structural variant calling software.
    Cameron DL; Di Stefano L; Papenfuss AT
    Nat Commun; 2019 Jul; 10(1):3240. PubMed ID: 31324872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural Variant Detection from Long-Read Sequencing Data with cuteSV.
    Jiang T; Liu S; Cao S; Wang Y
    Methods Mol Biol; 2022; 2493():137-151. PubMed ID: 35751813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clair3-trio: high-performance Nanopore long-read variant calling in family trios with trio-to-trio deep neural networks.
    Su J; Zheng Z; Ahmed SS; Lam TW; Luo R
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35849103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast read alignment with incorporation of known genomic variants.
    Guo H; Liu B; Guan D; Fu Y; Wang Y
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 6):265. PubMed ID: 31856811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining accurate tumor genome simulation with crowdsourcing to benchmark somatic structural variant detection.
    Lee AY; Ewing AD; Ellrott K; Hu Y; Houlahan KE; Bare JC; Espiritu SMG; Huang V; Dang K; Chong Z; Caloian C; Yamaguchi TN; ; Kellen MR; Chen K; Norman TC; Friend SH; Guinney J; Stolovitzky G; Haussler D; Margolin AA; Stuart JM; Boutros PC
    Genome Biol; 2018 Nov; 19(1):188. PubMed ID: 30400818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DeepSom: a CNN-based approach to somatic variant calling in WGS samples without a matched normal.
    Vilov S; Heinig M
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36637201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. VariFAST: a variant filter by automated scoring based on tagged-signatures.
    Zhang H; Wang K; Zhou J; Chen J; Xu Y; Wang D; Li X; Sun R; Zhang M; Wang Z; Shi Y
    BMC Bioinformatics; 2019 Dec; 20(Suppl 22):713. PubMed ID: 31888441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cnngeno: A high-precision deep learning based strategy for the calling of structural variation genotype.
    Bai R; Ling C; Cai L; Gao J
    Comput Biol Chem; 2021 Oct; 94():107417. PubMed ID: 33810991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One Size Doesn't Fit All - RefEditor: Building Personalized Diploid Reference Genome to Improve Read Mapping and Genotype Calling in Next Generation Sequencing Studies.
    Yuan S; Johnston HR; Zhang G; Li Y; Hu YJ; Qin ZS
    PLoS Comput Biol; 2015 Aug; 11(8):e1004448. PubMed ID: 26267278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FIREVAT: finding reliable variants without artifacts in human cancer samples using etiologically relevant mutational signatures.
    Kim H; Lee AJ; Lee J; Chun H; Ju YS; Hong D
    Genome Med; 2019 Dec; 11(1):81. PubMed ID: 31847917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Different structural variant prediction tools yield considerably different results in Caenorhabditis elegans.
    Lesack K; Mariene GM; Andersen EC; Wasmuth JD
    PLoS One; 2022; 17(12):e0278424. PubMed ID: 36584177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. iSVP: an integrated structural variant calling pipeline from high-throughput sequencing data.
    Mimori T; Nariai N; Kojima K; Takahashi M; Ono A; Sato Y; Yamaguchi-Kabata Y; Nagasaki M
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S8. PubMed ID: 24564972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validation and assessment of variant calling pipelines for next-generation sequencing.
    Pirooznia M; Kramer M; Parla J; Goes FS; Potash JB; McCombie WR; Zandi PP
    Hum Genomics; 2014 Jul; 8(1):14. PubMed ID: 25078893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DeepSSV: detecting somatic small variants in paired tumor and normal sequencing data with convolutional neural network.
    Meng J; Victor B; He Z; Liu H; Jiang T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33164053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network.
    Cai L; Wu Y; Gao J
    BMC Bioinformatics; 2019 Dec; 20(1):665. PubMed ID: 31830921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NanoCaller for accurate detection of SNPs and indels in difficult-to-map regions from long-read sequencing by haplotype-aware deep neural networks.
    Ahsan MU; Liu Q; Fang L; Wang K
    Genome Biol; 2021 Sep; 22(1):261. PubMed ID: 34488830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lightning-fast genome variant detection with GROM.
    Smith SD; Kawash JK; Grigoriev A
    Gigascience; 2017 Oct; 6(10):1-7. PubMed ID: 29048532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.