These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33378895)

  • 1. Existence of traveling wave solutions to data-driven glioblastoma multiforme growth models with density-dependent diffusion.
    Kashkynbayev A; Amanbek Y; Shupeyeva B; Kuang Y
    Math Biosci Eng; 2020 Oct; 17(6):7234-7247. PubMed ID: 33378895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A data-motivated density-dependent diffusion model of in vitro glioblastoma growth.
    Stepien TL; Rutter EM; Kuang Y
    Math Biosci Eng; 2015 Dec; 12(6):1157-72. PubMed ID: 26775861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: an Abel equation based approach.
    Harko T; Mak MK
    Math Biosci Eng; 2015 Feb; 12(1):41-69. PubMed ID: 25811333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patient-specific parameter estimates of glioblastoma multiforme growth dynamics from a model with explicit birth and death rates.
    Han LF; Eikenberry S; He CH; Johnson L; Preul MC; Kostelich EJ; Kuang Y
    Math Biosci Eng; 2019 Jun; 16(5):5307-5323. PubMed ID: 31499714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image-driven modeling of the proliferation and necrosis of glioblastoma multiforme.
    Patel V; Hathout L
    Theor Biol Med Model; 2017 May; 14(1):10. PubMed ID: 28464925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the radiotherapy effect in the reaction-diffusion equation.
    Borasi G; Nahum A
    Phys Med; 2016 Sep; 32(9):1175-9. PubMed ID: 27589895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Traveling wave solutions of a singular Keller-Segel system with logistic source.
    Li T; Wang ZA
    Math Biosci Eng; 2022 Jun; 19(8):8107-8131. PubMed ID: 35801459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference on an interacting diffusion system with application to in vitro glioblastoma migration (publication template).
    Lindwall G; Gerlee P
    Math Med Biol; 2024 Sep; 41(3):250-276. PubMed ID: 39135528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Parameter Distributions for Reaction-Diffusion Equations with Competition using Aggregate Spatiotemporal Data.
    Nguyen K; Rutter EM; Flores KB
    Bull Math Biol; 2023 Jun; 85(7):62. PubMed ID: 37268762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of fractal-shaped outer boundary of glioblastoma multiforme on drug delivery.
    Samioti SE; Benos LT; Sarris IE
    Comput Methods Programs Biomed; 2019 Sep; 178():191-199. PubMed ID: 31416549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating glioblastoma growth consisting both visible and invisible parts of the tumor using a diffusion-reaction model followed by resection and radiotherapy.
    Moshtaghi-Kashanian N; Niroomand-Oscuii H; Meghdadi N
    Acta Neurol Belg; 2020 Jun; 120(3):629-637. PubMed ID: 29869778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating intratumoral heterogeneity from spatiotemporal data.
    Rutter EM; Banks HT; Flores KB
    J Math Biol; 2018 Dec; 77(6-7):1999-2022. PubMed ID: 29737395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model.
    Wen Z; Fan M; Asiri AM; Alzahrani EO; El-Dessoky MM; Kuang Y
    Math Biosci Eng; 2017 Apr; 14(2):407-420. PubMed ID: 27879106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant Dynamics, Birth-Jump Processes, and Sharp Traveling Waves.
    Rodríguez N; Malanson G
    Bull Math Biol; 2018 Jun; 80(6):1655-1687. PubMed ID: 29748838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Traveling wave speed and profile of a "go or grow" glioblastoma multiforme model.
    Tursynkozha A; Kashkynbayev A; Shupeyeva B; Rutter EM; Kuang Y
    Commun Nonlinear Sci Numer Simul; 2023 Apr; 118():. PubMed ID: 36582429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Travelling wave analysis of a mathematical model of glioblastoma growth.
    Gerlee P; Nelander S
    Math Biosci; 2016 Jun; 276():75-81. PubMed ID: 27021919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Traveling wave" solutions of FitzHugh model with cross-diffusion.
    Berezovskaya F; Camacho E; Wirkus S; Karev G
    Math Biosci Eng; 2008 Apr; 5(2):239-60. PubMed ID: 18613732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of glioblastoma growth using a 3D multispecies tumor model with mass effect.
    Subramanian S; Gholami A; Biros G
    J Math Biol; 2019 Aug; 79(3):941-967. PubMed ID: 31127329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-similar solutions to a density-dependent reaction-diffusion model.
    Ngamsaad W; Khompurngson K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066120. PubMed ID: 23005175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of phenotypic switching on glioblastoma growth and invasion.
    Gerlee P; Nelander S
    PLoS Comput Biol; 2012; 8(6):e1002556. PubMed ID: 22719241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.