These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 33379127)
1. Sensitive quantitative image analysis of bisulfite based on near-infrared upconversion luminescence total internal reflection platform. Chen H; Wanying Xia ; Gao Q; Wang L Talanta; 2021 Mar; 224():121928. PubMed ID: 33379127 [TBL] [Abstract][Full Text] [Related]
2. Cyanine dye-assembled composite upconversion nanoparticles for the sensing and cell imaging of nitrite based on a single particle imaging method. Liu Y; Zhu W; Wei X; Wang L; Chen H Analyst; 2022 Jun; 147(12):2793-2801. PubMed ID: 35608000 [TBL] [Abstract][Full Text] [Related]
3. Quantitative image analysis method for detection of nitrite with cyanine dye-NaYF Chen H; Tang W; Liu Y; Wang L Food Chem; 2022 Jan; 367():130660. PubMed ID: 34390907 [TBL] [Abstract][Full Text] [Related]
4. Turn-on detection of glutathione S-transferase based on luminescence resonance energy transfer between near-infrared to near-infrared core-shell upconversion nanoparticles and organic dye. Chen H; Yang X; Liu Y; Wang L Anal Bioanal Chem; 2020 Sep; 412(23):5843-5851. PubMed ID: 32691084 [TBL] [Abstract][Full Text] [Related]
5. A near-infrared upconversion luminescence total internal reflection platform for quantitative image analysis. Xia W; Ling B; Wang L; Gao F; Chen H Chem Commun (Camb); 2020 Jul; 56(60):8440-8443. PubMed ID: 32583826 [TBL] [Abstract][Full Text] [Related]
6. Sensitive detection of sulfide ions in red region based on luminescence resonance energy transfer between upconversion nanoparticles and dye-670. Yang X; Liu Y; Chen H; Wang L Luminescence; 2021 Feb; 36(1):110-116. PubMed ID: 32725690 [TBL] [Abstract][Full Text] [Related]
7. Construction of an upconversion luminescence composite nanoprobe for ratiometric single particle imaging detection of hydrogen peroxide in food. Wang R; Cheng J; Wang L; Liu Y; Chen H Food Chem; 2024 Dec; 461():140928. PubMed ID: 39181043 [TBL] [Abstract][Full Text] [Related]
8. A highly sensitive biosensing platform based on upconversion nanoparticles and graphene quantum dots for the detection of Ag. He L; Yang L; Zhu H; Dong W; Ding Y; Zhu JJ Methods Appl Fluoresc; 2017 May; 5(2):024010. PubMed ID: 28474602 [TBL] [Abstract][Full Text] [Related]
9. Turn-on detection of MicroRNA155 based on simple UCNPs-DNA-AuNPs luminescence energy transfer probe and duplex-specific nuclease signal amplification. Lu Y; Wang L; Chen H Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117345. PubMed ID: 31310956 [TBL] [Abstract][Full Text] [Related]
10. Luminescence energy transfer detection of PSA in red region based on Mn2+-enhanced NaYF4:Yb, Er upconversion nanorods. Zhang J; Wang S; Gao N; Feng D; Wang L; Chen H Biosens Bioelectron; 2015 Oct; 72():282-7. PubMed ID: 25996781 [TBL] [Abstract][Full Text] [Related]
11. Improving Flow Bead Assay: Combination of Near-Infrared Optical Tweezers Stabilizing and Upconversion Luminescence Encoding. Zheng B; Kang YF; Zhang T; Li CY; Huang S; Zhang ZL; Wu QS; Qi CB; Pang DW; Tang HW Anal Chem; 2020 Apr; 92(7):5258-5266. PubMed ID: 32156113 [TBL] [Abstract][Full Text] [Related]
13. Aptamer-based luminescence energy transfer from near-infrared-to-near-infrared upconverting nanoparticles to gold nanorods and its application for the detection of thrombin. Yuan F; Chen H; Xu J; Zhang Y; Wu Y; Wang L Chemistry; 2014 Mar; 20(10):2888-94. PubMed ID: 24501010 [TBL] [Abstract][Full Text] [Related]
14. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles. Wang M; Hou W; Mi CC; Wang WX; Xu ZR; Teng HH; Mao CB; Xu SK Anal Chem; 2009 Nov; 81(21):8783-9. PubMed ID: 19807113 [TBL] [Abstract][Full Text] [Related]
15. A near-infrared magnetic aptasensor for Ochratoxin A based on near-infrared upconversion nanoparticles and magnetic nanoparticles. Dai S; Wu S; Duan N; Wang Z Talanta; 2016 Sep; 158():246-253. PubMed ID: 27343602 [TBL] [Abstract][Full Text] [Related]
16. A facile visualized solid-phase detection of virus-specific nucleic acid sequences through an upconversion activated linear luminescence recovery process. Liu X; He C; Huang Q; Yu M; Qiu Z; Cheng H; Yang Y; Hao X; Wang X Analyst; 2022 May; 147(11):2378-2387. PubMed ID: 35543144 [TBL] [Abstract][Full Text] [Related]
17. Dual-Acceptor-Based Upconversion Luminescence Nanosensor with Enhanced Quenching Efficiency for in Situ Imaging and Quantification of MicroRNA in Living Cells. Yang L; Zhang K; Bi S; Zhu JJ ACS Appl Mater Interfaces; 2019 Oct; 11(42):38459-38466. PubMed ID: 31593426 [TBL] [Abstract][Full Text] [Related]
18. NaYF4:Yb3+/Er3+ nanoparticle-based upconversion luminescence resonance energy transfer sensor for mercury(II) quantification. Li H; Wang L Analyst; 2013 Mar; 138(5):1589-95. PubMed ID: 23353928 [TBL] [Abstract][Full Text] [Related]
19. A paper-supported aptasensor based on upconversion luminescence resonance energy transfer for the accessible determination of exosomes. Chen X; Lan J; Liu Y; Li L; Yan L; Xia Y; Wu F; Li C; Li S; Chen J Biosens Bioelectron; 2018 Apr; 102():582-588. PubMed ID: 29241062 [TBL] [Abstract][Full Text] [Related]
20. Upconversion luminescence nanosensor for TNT selective and label-free quantification in the mixture of nitroaromatic explosives. Ma Y; Wang L Talanta; 2014 Mar; 120():100-5. PubMed ID: 24468348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]