These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 33379129)
21. Label-free and highly sensitive APE1 detection based on rolling circle amplification combined with G-quadruplex. Liu B; Yang Z; Huang T; Li MM; Duan W; Xie B; Chen JX; Dai Z; Chen J Talanta; 2022 Jul; 244():123404. PubMed ID: 35349840 [TBL] [Abstract][Full Text] [Related]
22. A universal electrochemical sensing system for small biomolecules using target-mediated sticky ends-based ligation-rolling circle amplification. Yi X; Li L; Peng Y; Guo L Biosens Bioelectron; 2014 Jul; 57():103-9. PubMed ID: 24561524 [TBL] [Abstract][Full Text] [Related]
23. Self-primer and self-template recycle rolling circle amplification strategy for sensitive detection of uracil-DNA glycosylase activity. Zhang P; Wang L; Zhao H; Xu X; Jiang W Anal Chim Acta; 2018 Feb; 1001():119-124. PubMed ID: 29291794 [TBL] [Abstract][Full Text] [Related]
24. Sensitive fluorescent detection of Listeria monocytogenes by combining a universal asymmetric polymerase chain reaction with rolling circle amplification. Zhan Z; Liu J; Yan L; Aguilar ZP; Xu H J Pharm Biomed Anal; 2019 May; 169():181-187. PubMed ID: 30877929 [TBL] [Abstract][Full Text] [Related]
25. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism. Zou Z; Qing Z; He X; Wang K; He D; Shi H; Yang X; Qing T; Yang X Talanta; 2014 Jul; 125():306-12. PubMed ID: 24840448 [TBL] [Abstract][Full Text] [Related]
26. Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification. Tian Q; Wang Y; Deng R; Lin L; Liu Y; Li J Nanoscale; 2015 Jan; 7(3):987-93. PubMed ID: 25470558 [TBL] [Abstract][Full Text] [Related]
27. Label-free fluorometric detection of microRNA using isothermal rolling circle amplification generating tandem G-quadruplex. Kim M; Kim DM; Kim DE Analyst; 2020 Sep; 145(18):6130-6137. PubMed ID: 32869779 [TBL] [Abstract][Full Text] [Related]
28. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs. Gao Z; Wu C; Lv S; Wang C; Zhang N; Xiao S; Han Y; Xu H; Zhang Y; Li F; Lyu J; Shen Z Anal Bioanal Chem; 2018 Oct; 410(26):6819-6826. PubMed ID: 30066196 [TBL] [Abstract][Full Text] [Related]
29. Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification. Wu ZS; Zhang S; Zhou H; Shen GL; Yu R Anal Chem; 2010 Mar; 82(6):2221-7. PubMed ID: 20151715 [TBL] [Abstract][Full Text] [Related]
30. Construction of a Structure-Switchable Toehold Dumbbell Probe for Sensitive and Label-Free Measurement of MicroRNA in Cancer Cells and Tissues. Li CC; Hu J; Zou X; Luo X; Zhang CY Anal Chem; 2022 Jan; 94(3):1882-1889. PubMed ID: 35000391 [TBL] [Abstract][Full Text] [Related]
31. Target binding protection mediated rolling circle amplification for sensitive detection of transcription factors. Zhang K; Wang L; Zhao H; Jiang W Talanta; 2018 Mar; 179():331-336. PubMed ID: 29310240 [TBL] [Abstract][Full Text] [Related]
32. Palindrome-Embedded Hairpin Structure and Its Target-Catalyzed Padlock Cyclization for Label-Free MicroRNA-Initiated Rolling Circle Amplification. Zeng H; Zhou H; Lin J; Pang Q; Chen S; Lin S; Xue C; Shen Z ACS Omega; 2023 Jan; 8(2):2253-2261. PubMed ID: 36687024 [TBL] [Abstract][Full Text] [Related]
33. Toehold-mediated ligation-free rolling circle amplification enables sensitive and rapid imaging of messenger RNAs in situ in cells. Chen J; Zhang Y; Chen D; Wang T; Yin W; Yang HH; Xu Y; Chen JX; Dai Z; Zou X Anal Chim Acta; 2021 May; 1160():338463. PubMed ID: 33894961 [TBL] [Abstract][Full Text] [Related]
34. Primer-template conversion-based cascade signal amplification strategy for sensitive and accurate detection of polynucleotide kinase activity. Huang C; Shen G; Ding S; Kan A; Jiang D; Jiang W Anal Chim Acta; 2021 Dec; 1187():339139. PubMed ID: 34753572 [TBL] [Abstract][Full Text] [Related]
35. A label-free strategy for SNP detection with high fidelity and sensitivity based on ligation-rolling circle amplification and intercalating of methylene blue. Zhang S; Wu Z; Shen G; Yu R Biosens Bioelectron; 2009 Jul; 24(11):3201-7. PubMed ID: 19481921 [TBL] [Abstract][Full Text] [Related]
36. Ligase chain reaction coupled with rolling circle amplification for high sensitivity detection of single nucleotide polymorphisms. Cheng Y; Zhao J; Jia H; Yuan Z; Li Z Analyst; 2013 May; 138(10):2958-63. PubMed ID: 23535938 [TBL] [Abstract][Full Text] [Related]
37. Accurate Thrombin Monitoring Based on Proximity Ligation Assay-Assisted Rolling Circle Amplification (RCA). Du H; Chang M; Zhang J; Zhou H; Shi X; Zhou X Mol Biotechnol; 2024 Feb; 66(2):270-276. PubMed ID: 37085687 [TBL] [Abstract][Full Text] [Related]
38. Sensitive lateral flow assay for bisulfite-free DNA methylation detection based on the restriction endonuclease GlaI and rolling circle amplification. Dong N; Wang W; Qin Y; Wang Y; Shan H Anal Chim Acta; 2022 Sep; 1227():340307. PubMed ID: 36089318 [TBL] [Abstract][Full Text] [Related]
39. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate. Wang P; Zhang T; Yang T; Jin N; Zhao Y; Fan A Analyst; 2014 Aug; 139(15):3796-803. PubMed ID: 24899364 [TBL] [Abstract][Full Text] [Related]
40. A dumbbell probe-mediated rolling circle amplification strategy for highly sensitive microRNA detection. Zhou Y; Huang Q; Gao J; Lu J; Shen X; Fan C Nucleic Acids Res; 2010 Aug; 38(15):e156. PubMed ID: 20547593 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]